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AN INVESTIGATION INTO THE TENSION ARISING BETWEEN 
NATURAL LANGUAGE AND MATHEMATICAL LANGUAGE 

EXPERIENCED BY MECHANICAL ENGINEERING STUDENTS 
M. D. Peters and E. Graham, E.  

Aston University.  University of Plymouth. 
This investigation is grounded within the concept of embedded cognition where the 
mind is considered to be part of a biological system.  A relationship between 
conceptual metaphors and modules is proposed to account for how students learn 
and use mathematics.  A first year undergraduate Mechanical Engineering cohort of 
students was tasked with explaining the behaviour of three balls of different masses 
being rolled down a ramp.  The explanations given by the students highlighted the 
cognitive conflict between the everyday use of the word energy and its scientific one.  
The results showed that even after many years of schooling, students were still unable 
trust the mathematics they had learned and relied upon pseudo-scientific notions to 
account for the behaviour of the balls. 
Keywords: metaphor, modules, concept, communicate, reductionist. 
INTRODUCTION 
The purpose of this paper is to report upon a study carried out with first year 
undergraduate Mechanical Engineering students.  They were presented with a 
physical system which was comprised of a ramp on which three different mass balls 
were rolled down.  One half of the class was asked to predict where the balls would 
land relative to one another, the other half were given a composite photograph of the 
balls landing and asked to explain this behaviour. The students’ analysis of the 
system was used to investigate the tension that arises from the everyday use of 
scientific terms and the precise mathematics definition.  In this case the concept and 
interpretation of the word energy was used to facilitate this study. 
BACKGROUND 
Mathematics, as an intellectual discipline, can be divided into two sections:  the 
language element and the computational aspect.  This dichotomy is at the root of the 
difficulties experienced by many learners and indeed by mathematicians at all levels.  
The difficulties faced by learners can be eloquently summed up by (Davis & Jones, 
2006): 

‘To put it in a simple form that highlights the students’ dilemma: they need to know the language of 
mathematics in order to know what mathematics is about; conversely, they need to know what mathematics is 
about in order to know how to use the language’.       
                                   (P 117) 

Natural language is used as the medium to convey and learn mathematics.  The 
development of natural language relies upon forming a link between the three 
dimensional ‘concrete’ world we live in and the conceptual world of our minds. In 
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the early stages of development a child learns to form the link between an object and 
the name given to it by the society the child lives in.  This is evident when a child 
first learns to count in that a number name (a numeral) is attached to an object.  The 
child also learns that once all of the objects have been counted, the last number 
indicates the quantity of the objects (the cardinal number).   
Lakoff & Núñez (2000) suggested that this process of learning can be explained by 
the use of metaphors and conceptual metaphors.  A metaphor is defined to be the 
linguistic construction used to describe a subject in terms of another unrelated object 
and conceptual metaphors to be where one idea is understood in terms of another 
unrelated idea. Lakoff & Núñez would explain the scenario of the child counting 
objects as an ‘arithmetic as object collection’ conceptual metaphor.  As the child 
progressed more conceptual metaphors would be developed in order to sensibly 
interpret the world.  This process of developing conceptual metaphors is reinforced 
by the use of metaphorical language extensively used in the teaching of mathematics.  
It is quite common when teaching children about numbers to employ the use of a 
‘measuring stick’ metaphor to explain the relationship between numbers.  In a similar 
way, the use of an ‘arithmetic as motion along a path’ metaphor is employed to 
explain negative numbers. The use of conceptual metaphors has been shown to be 
problematic within the classroom (Doritou & Gray 2007).   
This use of natural language and its reliance upon metaphors to communicate 
mathematical ideas can be problematic.  Within the Philosophy of Language 
community there is an ongoing debate concerning the interpretation and meaning 
assignment to metaphors.  Searle (1993) suggested that the metaphorical meaning of 
a predicate on a particular occasion depends upon the literal meaning of the predicate.  
Stearn (2000) argued that metaphors are context dependent in that they can convey 
different meanings in different situations and that the interpretation of the metaphor 
depends upon the recipient’s environment.  With regard to the learning of 
mathematics this external use of metaphors, that is, the metaphors used to teach, 
reinforce the development of conceptual metaphors. The learner at some stage has to 
realise that concrete objects are not necessarily the subject of mathematical 
operations.  For example, the arithmetic as object collection metaphor can prove to be 
problematic when the learner is faced with set theory where the natural numbers are 
described in terms of the empty set, that is, ∅ maps to 0, ∅  maps to 1, 
∅, ∅ , ∅, ∅  maps to 0, 1 and 2, since the empty set is the fundamental ‘unit’ and 

not a physical object. This highlights the problem that the learner can, in some 
instances, attaching a name to a concept at one stage in their mathematical 
development, but at a later stage the concept is modified but the familiar name is still 
used or a familiar concept is given a different name (eg. the equation 𝑦 = 3𝑥 + 2 
becomes the function 𝑓 𝑥 = 3𝑥 + 2). 
This learned ability to perform, for example, arithmetic builds upon an innate ability 
to ‘subitise’.  Butterworth (1999) and Dehaene (1997) have provided evidence for the 
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existence of a region of the brain, the inferior parietal lobe, which is capable of 
processing numbers up to approximately four without the need for counting 
(numerosity, subitising).  Techniques such as counting, ordering and grouping have, 
of necessity, been developed from this innate ability to allow humans to make sense 
of and control their world.  
LINGUISTIC AND MATHEMATICAL COMMUNICATION 
Two models of linguistic communication that stand in sharp contrast are the classical 
code model where sentences are comprised of sound-meaning pairs and the more 
recent inferential model where the sentence provides a semantic structure from which 
the meaning can be inferred (Sperber & Origgi, 2010). In order to communicate, 
according to the code model, the speaker and listener must interpret the sentences in 
precisely the same way.  In other words, the speaker and listener have identical 
lexicons and both interpret the words and how they are arranged in the same way.  In 
contrast to this the inferential model acknowledges that ambiguity can arise from the 
listener misinterpreting the speaker’s message.  In this model, understanding the 
speaker’s meaning is an inferential process using a common grammar which assigns 
semantic properties to the sentence and uses context to aid interpretation.  Anderson 
(1997) studied two working environments: a garage and a postal service.  He 
discovered that in many cases the workers would use words and phrases that did not 
conform to the standard natural language, but instead used abbreviated sentences and 
sometimes just words to make a request or convey an instruction.  Since the workers 
were in the same environment, ambiguities did not arise. 
In the context of mathematics, the language used is often inferential.  In one respect 
the novice mathematician develops a form of proto-language where a lexicon of 
coded concepts is built where these concepts, to a certain extent, are independent of 
one another.  This developmental or learning process eventually leads to the 
acquisition of a language governed by a grammar or grammars associated with a 
comprehensive mathematical lexicon.  The developed mathematical language is a 
much more concise language than a natural one and gains its analytical power from 
the ability to use a symbol to represent a complex concept.  It is not until a later stage 
that links are formed between these concepts and then super concepts are created 
(Sfard, 1991).  It could be said that the symbol reifies the concept in the sense that it 
can be manipulated and used to investigate both physical artefacts and abstract 
concepts. From the learners’ perspective, the interpretation of these symbols can be a 
difficult and cognitively demanding process especially when the fundamental 
concepts rely upon a conceptual metaphor grounded in the ‘real’ world.   
Nowak, Kamarova and Niyogi (2001), in their discussion of cognitive development 
in humans, suggested that the brain developed as a modular system.  For example, the 
skill of reading is relatively new on an evolutionary time scale whereas coarse 
grained object recognition would have been required from early on in order to 
survive. This example provides an instance of modular adaptation where the object 
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recognition module developed the capability to recognise abstract symbols.  They 
also suggested that skills like reading and other more sophisticated object recognition 
processes that are constantly being used, develop their own modules based on ones in 
which similar processes already exist. 
Fodor (1983) suggested that modules must fulfil certain properties to a lesser or 
greater degree: they must be domain specific, they use encapsulated information i.e. 
that do not have to use other psychological systems in order to operate, they are 
activated without conscious control (Fodor called them mandatory), their outputs are 
shallow, they are quick to process pertinent data, they have characteristic breakdown 
patterns and the neural architecture is fixed.  Pinker (1998) suggested that a module 
should be defined by the specific operations they perform on the information they 
receive. Fodor himself recognised that his original definitions were too rigid since 
some processes, to a greater or lesser extent, may not adhere to the criteria he set for a 
process to be considered modular.  Two of the key criteria suggested by him were 
domain specificity and encapsulation.  Domain specificity is defined to be the class of 
information that the module is designed to accept or operate upon.  Encapsulation 
refers to the notion that modules are not influenced by information or processes 
external to it.  An analogy given by Barrett & Kurzan (2006) of encapsulation is that 
of a pipe.  The inputs are fed into one end of the pipe and, since the information is 
protected by the structure of the pipe, the outcome cannot be influenced.  Fodor’s 
idea of encapsulation therefore prohibits the influence of other modules, such as 
memory or other higher cognitive functions, having an effect.  This strict definition 
would prohibit the process of adaptation to fulfil newer processes.  It must be 
possible, therefore, for the modules to interlink and form interdependencies.  This 
would be more cognitively efficient than having to develop specific modules to fulfil 
a particular task.   
If the ideas of conceptual metaphors and modules are combined, a relationship 
between them can be established.  The ‘activation’ of a module relies upon domain 
specificity.  The data activating the module at a fundamental level comes from the 
sensory system.  This data in turn becomes information upon which an action can be 
taken.  For example, in the classic ‘fight or flight’ scenario a decisive point is reached 
where a decision has to be made regarding the most appropriate action to take.  A 
similar emotional response is elicited when someone watches, for example, a horror 
film.  Although the viewer knows intellectually it is just a fiction, the human limbic 
system translates this to a pseudo-reality where some life preserving response is 
necessitated.  The extension of this idea of abstract scenarios to pseudo-physical ones 
within mathematics seems perfectly feasible.  For example, vectors can be used to 
represent objects moving in a particular direction.  In order for a learner to make 
sense of vectors, some idea of what ‘moving’ means and what ‘direction’ means is 
crucial.  This ‘real world’ experience is internalised as a conceptual metaphor thus 
enabling a cognitive link to be made in order to interpret and make sense of a 
mathematical expression or equation.  Unfortunately, the over reliance upon 
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conceptual metaphors, as illustrated earlier, presents problems when strict 
mathematic definitions are introduced.  At a ‘folk’ definition level the concepts of 
speed and velocity are interchangeable and indeed in many mathematics problems the 
learner is able to rely upon this ‘loose’ definition.  The challenge comes when 
circular motion has to be studied.  In this instance the object moving along a circular 
path is subject to continuous directional changes and hence must be described by 
velocity not speed.  This creates a conflict for the learner who now either has to adapt 
a deeply ingrained metaphor to include the notion of changing direction or else has to 
separate the two concepts and rely upon semantic processing to correctly resolve any 
problems.  This conflict was evident in an investigation carried by Peters & Graham 
(2009) where a group of trainee teachers were asked to explain the forces acting on 
an object suspended without any support in mid-air. This investigation demonstrated 
the cognitive conflict experienced by some teachers when attempting to use Newton’s 
third law of motion to explain the problem.  They could not identify the relationship 
between the object and the Earth in terms of forces and attempted to modify their 
conceptual metaphors to allow for an object to be suspended without physical 
support. 
The question arises as to how a conceptual metaphor can be developed from a real 
life experience.  Corballis (2010) stated that the discovery of mirror neurons provided 
strong support for the theory that language evolved from manual gestures rather than 
primate calls.  The extension of this enables the explanation of how a conceptual 
metaphor is developed.  The combination of modules and mirror neurons could 
provide an explanation as to how a life experience is mapped to an abstract one.  For 
example, an observer watches someone walking down a street.  The observer knows 
from experience that the walker must have had a starting point, will travel a certain 
distance and then stop.  In the suggested model this equates to the observer parsing 
the data, activating a mirror neuronal structure which in turn activates pertinent 
modules resulting in the development of a metaphor for moving.  If the abstract case 
is considered of a mathematician parsing the equation 𝑠 = 𝑑/𝑡 where 𝑠 is speed, 𝑑 is 
distance and 𝑡 time, the mathematician is first able to equate the physical entities of 
speed, distance and time to the respective symbols.  These symbols invoke the 
necessary conceptual metaphor and a resolution is formulated.  There seems an 
obvious link between concrete experiences and conceptual metaphors, but what about 
when the concept itself is abstract and the possibility exists for there to be a cognitive 
conflict between the ‘scientific definition’ and the ‘folk definition’?  A good example 
of this is the use of the term ‘energy’. 
The issues around the learning and teaching of energy are well reported at the 
secondary level of education (Sefton 1998, Millar 2005, Trumper & Gorsky 1993, 
Solomon, 1983).  As Sefton points out there is no unique definition of energy and the 
one normally taught in schools is ‘the capacity of a system to do work’.  In this paper 
energy is treated as a value which cannot change (first law of thermodynamics). The 
approach to teaching science and indeed mathematics is to start with the components 
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of a system (ie. definitions, single concepts) and build towards an overall analytical 
model ie. a bottom up approach.  This approach often obscures the ‘end point’ of 
learning about, for example energy, leaving the learners with an assortment of 
disconnected concepts.  This form of teaching along with the pseudo-scientific use of 
the word ‘energy’, results in the learner not knowing when or what to apply the 
abstract, scientific conception of energy. 
Experimental Design 
The group for this research comprised of 44 first year undergraduate Mechanical 
Engineering students.  They had all studied mathematics to an advanced level during 
their secondary education. The investigation was carried out in the second semester 
of their first year.   
The group was divided into two subgroups and placed in different rooms.  Once in 
their designated rooms they were seated so that they were unable to see their 
immediate neighbour’s response.  The first group were shown a small ball (tennis 
ball) rolling down a ramp (Figure 1). They were then asked to predict where a 
‘heavier’ ball would land relative to the first one.  Finally they were asked to predict 
where a third ball (‘heaviest’) would land relative to the other two.  They were given 
the opportunity to request additional information.  To facilitate this, the researcher 
had brought along a tape measure and a set of electronic scales which were initially 
hidden from view so that the learners would not be given a false prompt that they 
required additional information.  In order to record their responses they were given 
prepared sheets with the pertinent questions. A typical question was, “You have seen 
a ball being rolled down a ramp and made a note of where it landed.  If another 
heavier ball was to be rolled down the ramp, would it land: (a) In front of the lighter 
ball or (b) behind the lighter ball?”  The option ‘land in the same place’ was not given 
since the idea behind the investigation was to test the students’ deep learning of 
interpreting equations.  They could have stated in the space provided for them to 
explain their answers that the balls would land in the same place.  The individual 
sheets were handed out at the appropriate time and collected in after each response.  
This was done so that as the investigation progressed the learners would be unable to 
modify their previous answers.   
The second group were shown a composite photograph of all three balls leaving the 
ramp and landing in the same place (Figure 2).  Their tasks were centred on them 
knowing the end result and having to provide reasons why this outcome occurred.  In 
a similar way to the first group, their answer sheets were collected in after each task. 
Discussion of results 
It was evident from their responses that the students were used to using a particular 
form of language inherited from their previous studies.  It seemed that when studying 
mathematics and in particular mechanics that they were used to a reductionist 
approach and analysing the individual components rather than analysing the system 
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as a whole.  One student wrote “The mass of the ball, the initial and final velocity and 
the displacement are the key values….” This suggests that the student was going to 
apply a series of steps, rather than taking the more holistic energy approach. The 
approach that would have been best for them to have adopted was to focus on the 
transfer of energy and its conversion from potential energy to kinetic energy. 
 

 
Figure 1, Ramp Configuration. 

 
Figure 2, Composite Photograph of 
Landing Balls 

In their answers some of them talked about the energy of the ball as if energy was a 
physical thing, for example like a mass, rather than an abstract mathematical concept 
used to facilitate the discussion of how physical systems operate.  In effect these 
students had been taught in a way that the concept of energy had become reified and 
was a commodity that was physically transferrable between the different components 
of a system.  This is not surprising since in every day conversations the word energy 
is used in a variety of contexts.  For example, it is quite common to talk about how 
much energy a person gains from eating certain foods, or the cost of energy to heat a 
home.  In terms of using conceptual metaphors, the students employed a container 
metaphor in that energy was contained within a vessel and the only way it could be 
transferred was by emptying the contents from one container into another.  For 
example, a typical response was “When the balls reached the bottom of the ramp, the 
potential energy was transferred to the kinetic energy of the ball…”. Most of the 
students were aware of potential and kinetic energies and how energy can be 
converted from one form to the other.  Although the equation for potential energy 
includes height, the students seemed unable to realise that this implied that for 
potential energy to exist a system is required and also a reference level.  In other 
words, potential energy cannot exist within a physical object in isolation.  If one 
looks at the two equations,  𝑃𝐸 = 𝑚𝑔ℎ and = !

!
𝑚𝑣! , it is evident that the common 

factor of m (mass) has no effect on the transfer of energy in this context and 
consequently the velocity of the ball is only reliant upon the initial height from which 
the ball was released.  Since the mass can be eliminated from their equations, the 
students should have been able to infer that energy could not be a physical entity 
because there would not be a physical object to possess energy.   
Typical approaches when asked to justify their answers mathematically, were to 
calculate the PE when the ball was stationary at the top of the ramp and use this to 
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calculate a value for the KE and subsequently find the velocity of the balls.  One 
student followed this procedure but still insisted that the mass was the major factor in 
determining how far the balls would travel.  This insistence was linked to earlier 
statements made when they were asked to explain the behaviour of the balls without 
the use of mathematics.  The context of the investigation, that is a mechanics class, 
seemed to have primed the students, in that they thought they were expected to 
calculate values, rather than to think conceptually.  This was evident from the way 
many of the students  wrote down a list of every equation they could remember 
involving forces (Newton’s 2nd law), displacement, time and acceleration equations 
(eg. 𝑠 = 𝑢𝑡 + !

!
𝑎𝑡!), energy (PE and KE) and attempted to fit the data they had to 

one or more of the equations rather than use the relevant equations to explain the 
scenario.  One student wrote “This equation covers all aspects of this experiment 
such as height of the object above ground level, acceleration due to gravity, etc to 
make the balls behave the way they do.” 
The second group were shown a composite photograph of all three balls leaving the 
ramp and landing in the same place.  They were asked, using their knowledge of 
mathematics, how this could be explained.  This form of the experiment involved the 
students in being able to ‘reverse engineer’ a system given the final outcome.  The 
semantic process should have been breaking down a ‘super-concept’ into the relevant 
individual ones thus enabling the key facts to be identified.  The majority of 
responses from this group were similar to the ones given by the first group.  For 
example, one student wrote “The heavier ball has to overcome more friction and has 
more gravity acting on it, meaning it falls to the ground faster.”  Another student 
wrote, even after seeing the outcome, “If the ball has more mass it will gain more 
momentum on the way down the slope and so will travel further.”  When asked 
which were the most important factors influencing the balls, the height the balls were 
released from, the distance the balls travelled and their mass were considered the key 
ones.  When asked to write down any conclusions regarding the behaviour of the 
balls, such things as the final velocity of the balls, the time of travel, mass, initial 
velocity and acceleration were considered the factors which determined where the 
balls would land. 
CONCLUSIONS 
The use of metaphors and metaphorical language, especially in the early stages of 
learning mathematics, is, to some degree, unavoidable.  Imagine trying to teach a five 
year old child the concept of number without relating it to counting physical objects.  
Even after many years of compulsory education and further education, this 
investigation revealed that the pseudo-scientific explanations still dominate.  The 
everyday use of the word energy has obscured, for many students the scientific notion 
of energy in the sense that they reify the concept of energy and employ a container 
metaphor to analyse a system involving energy transfer. The wording and optional 
answers given on the answer sheets, no doubt influenced the answers given by the 
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students.  In particular, since there was not an option stating the “balls could land in 
the same place” had a strong influence on the answers the students gave.  This in 
itself demonstrated that the depth of learning was superficial in the sense that their 
scientific knowledge and their ability to interpret the pertinent equations was not 
strong enough to overcome their intuitive interpretation and pseudo-scientific 
interpretation of the given scenario.  In addition to this the students were primed by 
the fact they were in a mechanics class at a university and felt obliged to use a 
number of equations to endeavour to find a numerical solution.  Their previous 
experience of mechanics classes, where they would expect to perform calculations to 
produce a solution to a well formed, contrived problem conditioned them to employ a 
reductionist approach, rather than investigating the system has a whole.   
The influence of natural language and way it is used to describe and explain everyday 
phenomena has a very profound effect on how learners interpret mathematics.  This 
paper used the concept of energy transfer to explore the tension between natural 
language and mathematical language.  Invariably, since natural language and the 
interpretation of scientific words used in everyday conversations are more common, 
the contest is often won by the ingrained pseudo-scientific concepts developed 
through these everyday interactions. 
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