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In this paper we propose a new classification of mathematical problems. Usually one 

speaks about low-level and high-level problems, about exercises and authentic 

mathematical tasks. We are going to classify problems in terms of activities needed to 

solve them and schemes of solutions. Moreover, a two-dimensional model of 

classification is introduced. Finally, we suggest an approach aimed at the 

development of the inductively-associative form of thinking. 
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INTRODUCTION 

One of the main problems of teaching mathematics is the selection of tasks which 

‘promote and develop mathematical talent’ in the best way (see, for example, 

Chamberlin, 2010). V. G. Dorofeev suggested using tasks with rich problem 

neighborhood (Dorofeev, 1983). The idea of the recent article of R. Leikin (Leikin, 

2007) was to teach students to find diverse solutions of a given problem, which form 

what the author calls the ‘solution space of a mathematical problem’. One of the 

authors of this article introduced a notion of ‘a problem cluster’, that is, ‘a collection 

of problems possessing a complex inner structure’ (Ivanov, 1998, and Ivanov & 

Il’ina, 2001). On the other hand, since problem solving is an activity, may be, it 

would be reasonable to distinguish problems by activities and methods that are used 

while solving them. 

THE STARTING POINT 

First of all, we are going to present a set consisting of ten problems. In our opinion, 

the top priority of any educational process must be the mathematical (intellectual) 

development. Studying mathematics, pupils solve a lot of problems. However, 

problem solving means more than just a straightforward execution of standard 

procedures. We must bear in mind that a famous Soviet psychologist S. L. Rubinstein 

said that: “Man’s development does not coincide with the content of his knowledge 

and skills and is not determined by the coherence of operations inherited to man, but 

by the culture of his internal intellectual processes.” Basing on our experience and 

intuition, we tried to select problems by means of which we could, so to speak, “enter 

the child’s mind”. Of course, these problems should be as varied as possible. 



  

Our experience says that these problems are (more or less) accessible to pupils aged 

16-17 studying mathematics at the advanced level at the St. Petersburg Lyceum # 30 

for Physics and Mathematics. However, unfortunately, they appear to be too difficult 

for the vast majority of Russian pupils (of the same age). We agree that the 

statements of these problems may appear to be rather unexpected, but there is no 

“complicated mathematics” in these problems, no one needs to know “sophisticated 

techniques” to solve them, and all necessary notions and methods are well-known to 

all pupils. Thus, if they have a very simple structure, what makes them so difficult?  

Our investigation started when we posed the following question to ourselves: 

• In what terms can one describe the characteristics of these problems in order to use 

them in the construction of the learning process and, in particular, in a classroom 

practice? 

In a certain sense we looked for a transition from ‘the tacit expertise’ to ‘the 

grounded science’ (Ruthven, 1993). The problem is that it is impossible to describe 

these characteristics in terms of the typologies of mathematical problems that are 

known in Russia and other countries (see, for example, Sarantsev & Miganova, 2001, 

and Chamberlin, 2010). For example, Chamberlin (Chamberlin, 2010) says that 

“HOT (high-level) tasks are those in which the problem solver needs to engage in 

cognition to successfully solve the problem.” But what if a pupil is able to solve one 

HOT task but isn’t able to solve another? Can the cognition processes in these cases 

differ from each other?  

We are going to introduce a new typology (in a certain sense a two-dimensional one). 

Some of its components were known previously (Vedernikova & Ivanov, 2002). To 

justify this typology, we are going to present and discuss the solutions of the 

following problems. 

A SET OF PROBLEMS 

1. The numerator of a given fraction is increased by 1 and the denominator is 

increased by 2. Compare the fraction obtained with the given fraction. 

2. Find the range of the expression 
2 2a a b   for a∈[−2,3] and b∈[−2, 1]. 

3. How many real solutions does the equation 2 2 2x y x y   have? 

4. Check whether or not the number 100903027 is prime. 

5. Suppose the numbers 
199x  and 

213x  are both rational. Is it true that the number x is 

also rational? 

6. Give a formula for a function whose graph looks like a curve in the following 

figure. 



  

 

7. Find the largest value of the fraction 
  

  
 where n is a positive integer. 

8. Does there exist a line tangent to the parabola 2 5y x x    and parallel to the line 

       ? 

9. Let a, b, and c be the sides of a triangle and S be its area. Prove that 6S < ab + bc 

+ ca. 

10. Consider the systems of the form 
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where a “*” stands for one of the symbols ≤ or ≥. Find the number of systems having 

nonempty solution set. 

FORMAL SOLUTIONS OF THE PROBLEMS 

In this section, we present solutions of these problems (which are given by the 

authors). Pupils’ solutions (and mistakes) will be discussed further. 

Problem 1. Let k be the numerator of the given fraction and let n be its denominator. 

After increasing the numerator by 1 and increasing the denominator by 2 we obtain 

the fraction 
   

   
. In order to understand which fraction is greater, let us consider their 

difference. Thus we obtain 
 

 
 

   

   
 

    

      
. Consequently, the initial number is 

greater if     , or 
 

 
 

 

 
. Thereby, if the given number was greater than 0.5, then 

we’ll obtain the number which is less than the given one. And if the given number 

was less than 0.5, then the obtained number is greater than the given number. 

Problem 2. Let us rewrite the given expression in the form           . Since 

        , the interval [0, 16] is the range of the expression       . Since 

      , the interval [−2, 1] is the range of the expression –    . 

Consequently, the interval [−2, 17] is the range of the given expression. 

Problem 3. Let us express y in terms of x by a sequel of natural transformations, 

          ,                
  

    
, 



  

so       
  

    
         

    . Thus, for any    , there exists a unique y 

such that the pair (x, y) satisfies the given equation. This equation has infinitely many 

solutions. 

Problem 4. The given number can be rewritten in the form 

100900000+3027 = 1009   100000 +3   1009 = 1009   (100000 +3) = 1009   100003. 

Therefore, it is a composite number. 

Problem 5. Since the numbers      and      are rational, their quotient 
    

    
 

             is rational, too. Similarly, the quotient of the number      and the 

fourteenth power of the number     is rational, so the number               is 

rational. Moreover, the number 
   

   
    is rational; consequently, the given number 

  
  

  
 is also rational. 

Problem 6. Let us try to find a polynomial      whose graph looks like the given 

curve. Number     must be its root with multiplicity three or more and the number 

    must be a root with multiplicity two or more. 

Let              . We have to check that the behavior of the function is similar 

to a function with a given graph, in particular, that the function      has three 

intervals of monotonicity. For that purpose we find the derivative, 

                                      . 

Therefore the function      increases on the intervals          and        and 

decreases on the interval        . 

Problem 7. Let us solve the inequality 
  

  
 

      

    
. Multiplying both sides by the 

common denominator we obtain the inequalities            ,        , 

and         , which are valid only for      . Consequently, the fraction 

attains its largest value for    . Thus, the answer is 9/8. 

Problem 8. The slope of the line tangent to the parabola          at the point 
        equals      . This tangent line is parallel to the line         if and 

only if           , that is, if        . 

Perhaps, it would be more natural to use the condition of tangency of a line to a 

parabola in terms of multiplicity of roots of an equation. Indeed, the line   
        is tangent to the graph           if and only if the equation 

               has a unique solution, that is, if the discriminant of the 

quadratic equation                equals zero. Obviously, the equation 

              has a solution; thus, the desired tangent line exists. 

Problem 9. The inequality       is valid; for example, since          , where 

α is the angle between the sides of the length a and b of a triangle. The equality takes 



  

place if and only if α= 90˚. Therefore,            . Now, since in a triangle, 

there can be only one right angle, at least two among three inequalities      , 

     , and       are strict ones, so            . 

Problem 10. Let us consider one of those systems. Since the solution set of each of 

the inequalities constituting this system is an interval and since the intersection of 

intervals is also an interval, the solution set of this system coincides with an interval. 

The endpoints of this interval lie in the finite set {1, 2, 3, 4, 5}, whence it coincides 

with one of the intervals (−∞, 1], [1, 2], [2, 3], [3, 4], and [4,+∞). Therefore, there are 

five systems with a nonempty solution set.  

SCHEMES OF SOLUTIONS  

We are sure that the development of mathematical thinking has to be one of the main 

goals of teaching mathematics at schools. First of all, pupils must see and perceive 

that it is a reasoning that constitutes the core of the solution of any mathematical 

problem. Now, if we want pupils to be able to write down a rigorous solution, he or 

she has to understand what is a justification (a proof) and what is not. The majority of 

mistakes arose from pupils’ inability to think in a logically-deductive way. 

The mistakes that pupils made in their solutions of Problem 1 are the typical 

examples. Some of them wrote that “since the denominator of the fraction increased 

by a bigger number than its numerator, the value of the fraction decreased” without 

giving any justification of this assertion. Here is the typical example of the solution of 

Problem 5. “Since the power of an irrational number may be a rational number, the 

rationality of x
199

 and x
213

 does not imply the number x is rational.” Pupils did not 

manage to see the gaps in their reasoning and, as a result, they did not even try to find 

the correct solutions. 

Let us now examine solutions of problems 3, 5, 6, and 9 from the point of view of the 

kinds of ways of reasoning. The scheme of the solution of Problem 3 could be called 

algebraic. One has to only use the well known algebraic relation            to 

obtain a linear-fractional equation in    and   . The construction of an algorithm is 

the key for the solution of Problem 5. We call such a scheme combinatory-

algorithmic. Although an answer to Problem 6 is a polynomial, it follows from 

analyzing properties of a function. The corresponding scheme may be called 

analytical. Finally, there are no transformations or algorithms in the solution of 

Problem 9, only pure logic. Certainly, any solution is an example of a logical 

reasoning; thus, we suggest calling such schemes syllogistic (in particular, a proof 

built upon reductio ad absurdum is syllogistic). 

Thus, we suggest classifying problems according to schemes involved in their 

solutions: algebraic, analytical, combinatory-algorithmic, syllogistic. 

Obviously, though in the solution of a really hard mathematical problem various 

kinds of schemes of reasoning occur, it seems natural to select problems requiring the 

above-mentioned schemes in their solutions (in their purest form, so to speak). 



  

KINDS OF (MATHEMATICAL) ACTIVITIES 

Now let us look at the solution of problem 7. It is short and simple, but how can one 

find it? A usual situation in a classroom is the following one: pupils look at the 

statement of the problem, sit still, and do not know what to do. The solution of any 

problem is a result of a (mathematical) activity. Unfortunately, Russian pupils are 

still used to only solving problems by means of prescribed rules. Usually, they have 

to only recognize the problem in order to use the corresponding method. As a result 

of such teaching and learning, they get stumped if more than one method is needed to 

solve a problem. However, let us suggest to pupils to calculate the initial terms of the 

given sequence    
  

  
. The following table contains the result of the calculation. 

n 1 2 3 4 5 6 

   0.5 1 1.125 1   

  
       

 

  
       

Now the behavior of the given sequence becomes completely clear. One only has to 

prove that this sequence decreases starting with its third term. Thus, we carried out a 

mathematical experiment that resulted in setting a hypothesis. The proof of this 

hypothesis was given in the above solution. 

The mathematical experiment that could be carried out in a solution of Problem 1 

shows that the obtained fraction may be more or less than the given one. Indeed, 
 

 
 

 

 
 , though 

 

 
   

 

 
. Although we aren’t able to set the correct hypothesis, this 

experiment will save us from the wrong conclusion. The solution itself consists of 

three steps. First of all, we have to codify the statement of the problem in order to 

write it in a symbolic form, namely, the fraction 
 

 
 is given and the fraction 

   

   
 is 

obtained. On the second step we rewrote the inequality     in the form       

and transformed the difference of fractions. Finally, we have to interpret correctly the 

obtained condition on the numbers k and n. Indeed, if we rewrite the inequality 

     in the form 
 

 
 

 

 
, we obtain the condition on the value of the given fraction. 

What kind of activities occurred in searching for the solution of Problem 4? As for 

us, we call it restructuring. Perhaps, this form of activity appears more transparent in 

the solution of the following problem. 

Problem 11. Check whether or not for any positive integer n the number       
     is a composite. 

The point is that when one is factorizing polynomials he or she is restructuring an 

expression. In our case, since                          
            , this number is a composite for any positive integer n. One is 

engaged in the same kind of activity doing substitutions in order to reduce a 

transcendental equation to an algebraic one, or, more generally, representing some 

given function as composition of other simpler functions. To conclude our discussion 



  

of Problem 4, we want to stress that the mathematical experiment will fail since the 

smallest divisor (over than 1) of the given number equals 1009, which is the 169th 

prime number. 

We suggest considering such kinds of general activities as: using a standard method, 

mathematical experiment, codifying, interpreting, restructuring, setting a hypotheses, 

self-control, transforming and transferring. 

Self-control is needed to avoid mistakes. The first example of using self-control one 

could see in the solution of Problem 1. Indeed, on one hand, almost everyone knows 

that           . On the other hand, this “non-equality” means that the relation 

           cannot be valid for all pairs    ∈  , though almost everyone could 

see that             . Therefore, the pair             is the solution of the 

given equation. It is impossible to guess other solutions; however, this does not imply 

that they do not exist! It may seem strange that we consider self-control as an 

activity. The point is that a skilled mathematician is able to catch his or her own 

mistakes unconsciously, seeing that the obtained result could not be valid. By 

contrast, a novice learner quite often ignores the obvious absurdities. Because of this 

a teacher has to foster self-control abilities which can be achieved only as a result of 

purposeful activity. 

By transforming and transferring we mean, in particular, using ideas and methods 

from some themes of mathematics to solve problems initially stated in the terms from 

another theme. For example, in the second solution of problem 8 we transformed the 

problem from calculus to the problem concerning multiple roots of polynomials. The 

same kind of transformation occurred in the solution of Problem 6. 

A TWO-DIMENSIONAL MODEL 

The main idea consists of using the classification “kind of activity—scheme of 

reasoning” to assess the process of mathematical education. If we want to develop 

different aspects of students’ mathematical thinking such as ability to formalize 

mathematical material, to generalize it, and others (Krutetskii, 1976), given problems 

have to be diverse in terms of kinds of activity used for their solution, and in terms of 

schemes of reasoning. In the following table we present our analysis of the solutions 

of the discussed problems. 

# kind of activity scheme of reasoning 

1 codifying; interpreting algebraic 

2 restructuring analytical 

3 self-control algebraic 

4 restructuring algebraic 

5 self-control combinatory-algorithmic 

6 transforming and transferring analytical 



  

7 experiment; setting a hypotheses analytical 

81 using a standard method analytical 

82 transforming and transferring algebraic 

9 using a standard method syllogistic 

10 experiment combinatory-algorithmic 

As you could see, there are no problems with coinciding pedagogical characteristics; 

all these problems are distinct. Therefore, in particular, this set may be used 

successfully by a teacher for assessment of pupils’ mathematical development.  

PAIRING PROBLEMS 

The problem of the development of inductively-associative form of mathematical 

thinking is highly important. Obviously, it is harder to attain this goal than to teach 

pupils to reason logically and rigorously. In the last part of our paper, we are going to 

develop the approach suggested in the section “Instead of a Conclusion” of the book 

Ivanov, 2009. The main (and well-known) idea is that “What you have been obliged 

to discover for yourself leaves a path in your mind which you can use again when the 

need arises." George Christoph Lichtenberg (1742-1799). 

In order to foster the associative thinking it is important to accustom pupils to see 

interrelations between various problems that may seem to be distinct. We restrict 

ourselves with several examples. We’ll accompany each of these examples with a 

“name” (the theoretical understanding of the relationships manifested is a task for the 

future). 

Example 1 (“Push on the idea”). In a situation when your pupils aren’t able to solve 

the suggested problem, it is worth giving them another one. For example, you gave 

them Problem 4. It is likely that they cannot solve it. 

You may suggest Problem 11 by saying something like “Never mind, try to solve 

another problem”. It is likely that the majority of your pupils will do it. Your next 

sentence should be: “Surely you have not guessed how to solve the previous 

problem?” 

Example 2 (“The mathematical content”). Consider the following problem. 

Problem 12. Examine the behavior of the function      
   

    
 (here a and b are 

positive numbers) on the interval [0,+∞). 

Its solution is rather standard. For example, one can find the derivative,       
           

       
 

    

       
. Thus, if     , then        , which implies that this 

function increases on the given interval; similarly, if     , then         and the 

function is decreasing. It is worth noting that the condition      is equivalent to 

the condition      
 

 
 

 

 
. 



  

Now let us pose two questions. 

Question 1: “Can you justify without doing any calculations that the inequality 

     
 

 
 implies that the given function decreases on the interval [0,+∞)?” 

Question 2: “Can you see some relationship between this problem and a problem 

within the given set?” 

The point is that Problem 1 is a straightforward corollary of Problem 12. And the 

number 0.5 in the answers of these problems appears because of the fact that the line 

      is the asymptote of a hyperbola which is the graph of the given linear-

fractional function. 

By the way, do you agree that it is useful to pair problems? 

One more example of disclosure of the mathematical content is another solution of 

Problem 5. Any mathematician would reason in the following way. Since numbers 

213 and 199 are relatively prime, there exist integers a and b, such that      
      , hence the number                              is rational. One 

could check that the two given numbers are relatively prime using the Euclidean 

algorithm. And this is exactly what has been done in the above solution. 

Example 3 (“The relationship with a known method”). There is a well-known (even 

routine) method of solving the following problem. 

Problem 13. Solve the inequality                       . 

Certainly, one can reason in the following way. The product of four numbers is 

positive if all these numbers are positive or within them there are two or four negative 

numbers. Thus, one can solve the given inequality by examining eight systems of 

inequalities. However, there exists much shorter solution. The points 1, 2, 3, and 4 

divide the line into five intervals. The left-hand side of the inequality does not change 

its sign within any of these intervals. Thus, the solution coincides with the union of 

the whole intervals and what we only have to do is to determine the sign in each 

interval. Certainly, it is the discussed method that should have appeared in 

pupils’mind in connection with Problem 10. 

CONCLUSION 

We can’t judge about other countries, but in Russia teaching mathematics even at the 

advanced levels too often means widening of studied mathematical notions, methods 

and algorithms. But, as it was mentioned at the conference “Teaching mathematics in 

Mathematics and Science high schools” (Saint-Petersburg, 2012), we can’t attain 

deep understanding of mathematics only by suggesting to students a lot of problems, 

most of which in our textbooks (including the textbooks for mathematics schools) are 

the problems about applying known methods and algorithms. As a result, the majority 

of our pupils are only able to apply standard methods and become helpless even in 

the simple situation when they have to use two techniques in order to solve a 

problem. We hope that the results of our research will be useful for teachers, 



  

supplying them with instruments which help them to analyse and enrich their 

pedagogical strategy as well as help them in constructing concrete lessons. 

To conclude, the proposed ideas may be also instructive in pre-service and in-service 

mathematics teacher education (see, Ivanov & Il’ina, 2001, Ivanov, 2001, and Ivanov, 

2009). 
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