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We investigate the reasoning of preservice teachers about uncertainty in the context 

of randomization tests. Last winter term (2011/2012), we developed a seminar about 

data analysis with TinkerPlots, where group comparisons have played a fundamental 

role. A typical task in this context was: “Is there a difference between two groups or 

could that difference have occurred at random due to the selection of our sample?” 

In the first part of this article we describe a possible method to answer such a 

question with the help of a randomization test (see Rossman, 2008) facilitated with 

TinkerPlots. In the second part we point out how the participants of our course 

conducted a randomization test in a statistical project work and which problems and 

(mis-)conceptions were observed. 

INTRODUCTION 

The preservice education of teachers of mathematics at the University of Paderborn 

consists of three domains: mathematics, didactics of mathematics and pedagogy. An 

obligatory course called “Elementary Statistics and Probability Theory”  is part of the 

programme. In addition the student teachers can participate in a seminar which 

deepens the course “Elementary Statistics and Probability Theory”. The authors of 

this article have designed a seminar for preservice teachers in mathematics called 

“Developing statistical reasoning with using the software TinkerPlots” (Frischemeier 

& Biehler,  2012). In this course, the participants go through the whole PPDAC-cycle 

(Wild & Pfannkuch, 1999) which includes analysing data with the software 

TinkerPlots 2.0 (Konold  & Miller, 2011) and writing down findings in a statistical 

report. Alongside describing and interpreting single distributions and exploring 

differences between them we wanted the participants to make conclusions about a 

wider universe and try to make generalizations of their findings. A typical task in 

connection with group comparisons was: “Is there a difference regarding a variable 

between two groups or could that difference have occurred at random due to the 

selection of our sample?” At the end, a statistical project work concluded the course. 

In the next part of this article we describe a possible method to answer such a 

question posed above with the help of a randomization test (see for example 

Rossman, 2008) facilitated with TinkerPlots. We focus on subject matter and 

knowledge of our students and do not discuss pedagogical content knowledge.  

THEORETICAL FRAMEWORK 

In general it is reported that pupils, students and pre-service teachers have a lot of 

misconceptions in testing hypotheses and using p-values (see e.g., Garfield and Ben-



  

Zvi 2008, p.270). There we also get to know that most of the students have problems 

with questions concerning generalizing of a result found in a sample. An opportunity 

for emergent inferential reasoning, especially in connection with results from group 

comparisons, is a so called randomization test. For a detailed and formal introduction 

in randomization tests see Ernst (2004). Rossman (2008) recommends starting 

inferential reasoning with randomization tests. He introduces randomization test with 

the example “dolphin therapy”. For details see Rossman (2008). A big advantage 

according to Rossman (2008) and an important argument for a first step into informal 

inferential reasoning via randomization tests is that “…this procedure for introducing 

introductory students to the reasoning process of statistical inference is that it makes 

clear the connection between the random assignment in the design of the study and 

the inference procedure” (p.10).  Rossman (2008) further points out that a 

randomization test  “…also helps to emphasize the interpretation of a p-value as the 

longterm proportion of times that a result at least as extreme as in the actual data 

would have occurred by chance alone under the null model” (p.10). Furthermore, 

Rossman points to the problem of the “final” conclusion and the possibility that the 

null model is correct (although this is “unlikely” given a small p-value). Cobb (2007) 

emphasizes that, with randomization tests, students in introductory courses have a 

better opportunity to understand the “core logic of inference” converse to an 

approach based on calculations from normal-based probability distributions. This was 

also proposed by R.A. Fisher “but […] was not realistic in his day due to the absence 

of computers”. Cobb (2007) also emphasizes his 3R´s: Randomize data production, 

Repeat by simulation to see what´s typical (and what´s not) and Reject any model that 

puts your data in its tail. The randomization of the data production (Cobb´s first “R”) 

is an important condition. However, we have decided to use randomization tests also 

in the context of observational studies comparing data to the hypothetical situation 

that a random assignment process has produced the data (see also Konold, 1994 for 

such an approach and Konold & Pollatsek, 2002 for the “process approach”). A 

bootstrap method would have been preferable if we deal with random samples, 

however, resampling with replacement seemed us too difficult for explaining it to 

students. If the data were produced by such a process (null hypothesis), it has to be 

judged whether a difference is likely to be due to random variation under the null 

model. Rossman (2008) claims that teachers could use randomization tests to connect 

the randomness that students perceive in the process of collecting data to the 

inference to be drawn. He provides examples of how such a randomization-based 

approach might be implemented at tertiary level, while Scheaffer and Tabor (2008) 

propose such an approach for the secondary curriculum and provide relevant 

examples. Which misconceptions of students occur when doing a hypothesis test? 

Vallecillos (1994) report that many students who thought (like in a deductive 

process) that the correct application of a test with a significant result implies the truth 

of the alternative hypothesis. Another misconception regarding p-values is that the p-

value is supposed to be the probability that the null hypothesis is true, given the 



  

observed data (Garfield & Ben-Zvi, 2008, p. 270).  In the following section we 

describe how we used Tinkerplots for doing randomization tests. We see this as a 

refinement of group comparisons in concrete informal terms being aware that our 

approach cannot solve all the problems students have with hypothesis testing. 

RANDOMIZATION TESTS FACILITATED BY TINKERPLOTS 

The sampler of TinkerPlots 2.0 can be used as a useful tool for simulations. At first 

we will describe a typical task handed out to the participants working with the so-

called Muffins data (Biehler, Kombrink & Schweynoch, 2003), which is a complex 

data set with 538 cases and about fifty variables of a questionnaire concerning media 

use and leisure time of  eleven graders. “How much time do the girls read more than 

the boys on average?”. Exploring the Muffins data reveals that the girls on average 

read approx. 0.82 hours per week more than the boys. This motivates the question: 

“Is there a difference regarding the variable “Time_reading”  between boys and girls 

or could that difference be due to the selection of our sample?” The 538 students are 

neither a random sample of a clear-cut population, nor do we do random “treatment 

assignments” However, we can just imagine a process, where reading time is 

independent from gender. If the data were produced by such a process (null 

hypothesis), we have to judge whether a difference of 0.82 hours can be due to 

random variation under the assumption of no difference. We imagine that we divide 

the group of 533 students randomly into a group of 301 pseudo-females and 232 

pseudo-males. Then we can calculate the mean difference of reading time in these 

two random subgroups. When we repeat this process many times, we can estimate the 

probability to get a mean difference greater or equal to 0.82 just by random group 

selections. The advantage of Tinkerplots is that such a random selection model can 

directly be implemented in the software. We formulate our null hypothesis “The data 

were produced by a process where there is no difference regarding the variable time 

reading between boys and girls.“ We estimate the probability that the difference 

between boys and girls is 0.82 hours or even higher under the assumption that the 

null hypothesis is true. This can be done in the following way by a simulation in TP. 

Figure 1 shows a screenshot with several steps of the randomization test in TP.  

 

Figure 1: Screenshot of doing a randomization test with TinkerPlots 



  

We place 533 balls labelled with the 533 times of the variable “Time_reading” in our 

group of respondents in box 1 (see figure 1, upper-left corner, left urn) and construct 

another box 2 (see figure 1, upper-left corner, right urn) with 232 balls labelled with 

(pseudo-) “male” and 301 balls labelled with (pseudo-) “female”. In the next step a  

ball from each box is drawn without replacement. This is repeated 533 times (because 

of 533 cases): The 533 values of the variable “gender” are randomly assigned to the 

533 values of the variable “Time_reading”. The results can be seen in the table and 

the plot “Muffins_randomised” (figure 1, middle and upper-right corner, see also the 

column “label” that contains the “pseudo-gender”). This whole process is repeated 

5000 times and we collect the measure “difference of the means of the two groups” 

with the “History”-function in TinkerPlots. The table (see figure 1, bottom-left 

corner) contains the collected measures of 5000 simulated random assignments.  In 

only three of the 5000 random assignments (see figure 1, bottom-right corner), the 

simulated result turns out to be as extreme or even more extreme than the observed 

difference in the Muffins data. With the divider-tool we can determine the number 

and the proportion of cases (measures) that are 0.82 hours and higher. This proportion 

is 0.0004, which is our p-value.  The “result” of the randomization test is an estimated 

probability (estimated by relative frequencies) of 0.0004 that the difference between 

the means of the two groups equals 0.82 or is even higher under the assumption that 

there is no difference in the process producing gender and reading time. What can we 

conclude from these results? Due to this very small p-value there is a very strong 

evidence against the null hypothesis of no difference.  

DESIGN OF THE LEARNING TRAJECTORY  

In this paragraph we want to describe the learning trajectory we created for the 

introduction into randomization tests on the one hand and a so-called randomization 

test-plan we handed out to the participants while doing a randomization test on the 

other hand. The major goal was that the participants learn to perform randomization 

tests with TinkerPlots as we demonstrated in the paragraph above (although we have 

paid just few attention to teaching the logic of inference at this stage). At first the 

participants were introduced in the sampler of TinkerPlots by modelling and 

performing some simple chance-experiments. Our introduction into randomization 

tests began with the “Extrasensory perception (ESP)” - task (Rossman et al., 2001, 

pp. 376), which the students had to do on their own in teams of two. In the working 

phase the first and second author gave support and feedback when problems 

occurred. Afterwards the results were discussed in the whole group.  In the next step, 

our intention was to draw parallels between the simulation of ESP-task and the 

performance of a randomization test regarding the Muffins task: “Is there a difference 

regarding the variable “Time_reading” between  boys and girls or did that difference 

occur at random due to the selection of our sample?”. The participants were handed 

out a randomization test-plan and then worked in groups of two on the muffins task 

described above. Before continuing with the description of the learning trajectory we 

want to give some arguments for handing out a randomization test-plan: Sweller 



  

(1999) have found out that the exploration of a complex learning trajectory such as 

the randomization test in our example, tasks the cognitive load of the learner very 

much. Due to the limitation of cognitive load he proposes to give the learner some 

help in form of structural aspects. With the randomization test-plan we give the 

participants a possibility to structure their thoughts and steps. With similar ideas to 

Biehler and Maxara (2007) we created the plan seen below (fig. 2).  

 

Figure 2: Randomization test-plan (with entries in “Muffins” – column, a task that our 

students had to do themselves) 

In this “randomization test-plan”, the participants have a structure for the simulation-

process on the one hand and can write down their findings on the other hand. On the 

left side of the plan, the participants get an overview of the structure of the 



  

randomization test, short instructions and leading questions for each (the forth 

column is without entries when it is handed out to the participants). A special feature 

of the plan is the third column “ESP”. The “ESP”-task is the exemplary task we used 

when introducing our students in randomization tests. To support the participants in 

step 6 to draw conclusions from p-values, we gave them further material in form of a 

hand-out which was supposed to give them hints how to evaluate possible p-values, 

as follows:  

Hand-out: *We have a very strong evidence against H0, if p < 0.1%. *We have a 

strong evidence against H0, if p < 1%. *We have a medium evidence 

against H0, if p < 5%. *We have a small evidence against H0, if p < 10%.  

(Hand-out for the participants) 

So after doing the “ESP”-task on their own with feedback of the first and second 

author as we have described above, the participants were handed out the “Muffins”-

task which they had to do in teams of two. The results were discussed in the whole 

group afterwards.  In reflecting on our “randomization test” sessions we found that 

there were two neuralgic points when doing a randomization test: First the correct 

formulation of the null hypothesis, second an adequate conclusion drawing from the 

resulting p-value. Finally the participants had to do a randomization test in their 

statistical project work, which was a requirement for completing the course.  

RESEARCH QUESTIONS 

In this paper, we will focus on the final randomization tests in the students’ statistical 

project reports. Three main research questions emerge: 1. How did the participants 

finally perform a randomization test with using of TinkerPlots in their project works? 

2. Were they able to fulfil the six steps of the randomization-test plan? 3. At which 

stages/steps did problems (which?) occur?  

DATA, PARTICIPANTS & METHODOLOGY 

We have had a look at eleven statistical project reports that the participants had to do 

at the end of the course in teams of two. They were allowed to choose their own 

questions related to the data sets we provided. Doing at least one randomization test 

in their report was a requirement. 23 participants attended the course, 22 of them 

worked on the project reports in teams of two, so we have 11 project works in total. 

The number of students’’ semesters varies from 4 to 11, most (11 from 23) students 

were in their fifth semester. For a deeper analysis, we analysed all written extracts of 

the statistical project reports that dealt with the randomization test-task while 

focussing on the successful execution of the six steps of the randomization test-plan 

and typical problems that occurred when going along these steps. So we have had a 

global view (cf. research question 1 and 2) and a local view (cf. research question 3) 

on the randomization tests of the project works. In the “global observation” we 

checked how well the participants performed the 6 steps of the simulation plan 

generally. If they accomplished a step as described in the example above, we called it 



  

“Step x successfully done”. We analysed the several steps with the background of our 

theoretical framework. We defined categories of typical problems with a focus on 

step 5 & 6. Furthermore we will also give typical examples for the categories in form 

of written extracts of students´ project works. 

RESULTS 

Let us have a look (table 1) how well the teams did in the several steps when doing a 

randomization test with TinkerPlots (Note, that every team have had an different 

topic, so some of them were confronted with p-values larger than 10%, others with p-

values smaller than 0.1%, for example).   

Steps 

successfully done 

Number of 

teams  (of 11) 

% 

Step1  11 100.00 

Step2  8 72.73 

Step3  10 90.91 

Step4  10 90.91 

Step5  5 45.45 

Step6  5 45.45 

Table 1: Overview-Randomization tests in project works 

Almost every team was able to conduct and fulfil the simulation of the randomization 

test with TinkerPlots in form of accomplishing steps 1,3 and 4. Step 2 (formulating 

null hypothesis), step 5 (identifying and reading of the p-value) and step 6 (drawing 

conclusions from p-value) seemed to be problematic points as we mentioned above.  

So we want to have a closer look on that now. 

Step 1 – Reading of the difference between groups in the dataset 

As seen in the table every team accomplished step 1 successfully. 

Step 2 – Formulation of null hypothesis 

Regarding step 2 we can say that the majority of the teams (8 of 11) gave a correct 

formulation of the null hypothesis when doing the randomization test. Two teams 

formulated the alternative hypothesis instead of the null hypothesis. For example 

when comparing the reading habits of boys and girls in the muffins data and 

investigating the variable “Time_reading” the hypothesis of one of the teams was: 

H. & P.: The Girls tend to spend more time on reading than boys. 

Two other teams (three teams in total) showed the same problem when formulating 

an adequate null hypothesis. 



  

Step 3 & Step 4 – Modelling the simulation process in TinkerPlots 

As seen in the table nearly every team (10 out of 11) managed to model the 

simulation process of the randomization test in TinkerPlots.  

Step 5 – Reading of the p-value 

A notable problem which occurred in step 5 was a false identification of p-value in 

form of the mean of the collected measures. Two out of eleven teams identified the 

mean of the measures as p-value. Let us have a look on the case of Laura & Sarah. 

They wrote, when investigating the hypothesis “the gender-difference on the means 

of the variable `Time_phone_20min` (Number of phone calls per week that last 

longer than 20 minutes) did happen by chance”: 

L. & S.: The mean of all means is approximately 0.000238873 after 5000 

simulations und therefore smaller than 0.1%, which shows a strong 

evidence against the null hypothesis. 

For them the mean of the 5000 collected differences is a very small value and seemed 

to turn out for them as a p-value. 

Step 6 – Drawing conclusions from the observed p-value 

In step 6 we found two phenomena: on the one hand “drawing premature conclusions 

from the p-value” such as “the p-value is smaller than 5%, therefore the null 

hypothesis can be rejected.”  and on the other hand “drawing false conclusions from 

an observed p-value”. We will give an example for “premature conclusions” first. 

Alex and Kathrin concluded under the null hypothesis “the difference of the means of 

the variable “age” concerning the marital status of students is due to random effects”: 

A. & K.: The statement can be rejected with a p-value of 4% (which is smaller than 

5%). Therefore the null hypothesis […] can be rejected. 

We consider this as premature because we taught the students not to take a definite 

decision but express the uncertainty when a small p-value occurs as an amount of 

evidence. An example of drawing false conclusions from the observed p-value is the 

following: The null hypothesis is seen as true, because the p-value is significantly 

high (> 10%). Victoria and Corinna were investigating whether a gender-difference 

of time spent on working (in hours per week) occurred at random and concluded:  

V. & C.: “The result of the randomization test shown here (0.1033) is a probability. 

Here we have a relative frequency of 0.1033 or 10.33%. This value 

corresponds to our p-value. [...] The p-value is bigger than 10% which 

means that the evidence is not so strong and therefore the null hypothesis 

must be true. “ 

They made a typical mistake, which is also reported in Garfield & Ben-Zvi (2008, 

p.270). Having a “large” p-value, they concluded, that the null hypothesis must be 

true. It is noticeable that this problem occurred at every (precisely: 3 out of 11) team, 

who conducted a randomization test in which the p-value turned out to be larger than 



  

10%. The problem may have occurred due to paying not enough attention to a p-

value larger than 10% in our learning trajectory. We can conclude that the 

participants have several problems to make conclusions on their own. Summary: two 

of eleven teams have identified the p-value as the mean of the collected measures. 

Four out of eleven teams rejected their null-hypothesis (particularly due to a small p-

value) in form of “drawing premature conclusions from a given p-value”. Three of 

eleven teams fell into the category “drawing false conclusions from a given p-value” 

concluded that the null hypothesis must be true, because of a large p-value (> 10%).  

All in all we can say that almost every team was able to deal with the technical 

process of the simulation in TinkerPlots, but they had partly problems with steps 5 

and 6. They have acquired procedural knowledge of performing randomization tests 

in TinkerPlots, but some still fail to formulate an adequate null hypothesis or to 

identify a p-value or fail to draw adequate conclusions from it. When evaluating a p-

value in the project reports, the participants seem to have the attitude either to accept 

or to reject a null hypothesis, instead of saying something like “…there is a 

small/medium/strong/very strong evidence against the null hypothesis”. Living with 

uncertainty obviously is something uncomfortable. 

LIMITATIONS AND FURTHER RESEARCH 

For evaluating the learning trajectory in the sense of design research approaches (see 

Cobb, Confrey, diSessa, Lehrer & Schauble, 2003) we plan a retrospective analysis 

and a redesign of the learning trajectory. Obviously there is a need to revise our 

learning trajectory in order to improve students’ conceptual understanding of 

randomization tests. How can they be better supported at major problems (for 

example the formulation of a correct null hypothesis; drawing conclusions from a 

given p-value)? We are currently (end of summer term 2012) conducting a qualitative 

interview study with the same participants, which is two-phased. In phase 1 they have 

to work on a group comparison (including a randomization test) exercise in teams of 

two. In phase 2 we interview them in form of a stimulated recall-method to elicit the 

thoughts and strategies of them when working on the task. This will hopefully give 

further insights into the cognitive processes of the students while working with 

randomization test with TinkerPlots. The interviews are informed by our previous 

analyses of project reports that we presented in this paper and are also directed 

towards the levels of conceptual understanding of the null model that they 

implemented with TinkerPlots sampler. The difficulties we observed with 

formulating null hypotheses may have a deeper origin in understanding a “null 

model” of no difference in a process approach with no random treatment assignments 

in the data production process. 
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