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In this paper, we focus on topological approaches to space, and we argue that 
experiences with topology allow middle school students to develop a more robust 
understanding of orientation and dimension. We frame our argument in terms of 
the phenomenological literature on perception and corporeal space. We discuss 
findings from a quasi-experimental study engaging 9 grades 5-8 students in a 6-
week series of school-based workshops focused on knot theory. We discuss video 
data that shows how students engage with the intrinsic disorientation of 
mathematical knots through the use of gesture and movement.  
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INTRODUCTION 
Fielker (2011) suggests that we need to broaden our conception of geometry and 
recognize that “geometries” are diverse kinds of approaches to space, some more 
suitable than others to the study of movement, transformation, connectedness, 
dimensionality and orientation. Taking this more expansive approach by inviting 
students to experiment with spatial reasoning creates an opportunity for students to 
attend to the corporeal and material aspects of mathematics. We focus on 
topological approaches to space, and we frame our analysis in terms of the 
literature on perception and corporeal space. We discuss data that suggests 
students’ gestures often function as devices for orienting a knot in relation to a 
moving frame of reference. Our analysis suggests that the students are 
operationalizing gesture and vision and voice to literally dislocate themselves in 
relation to the knot so as to better explore it, and that the experience provides an 
opportunity for them to develop the topological concept of dimensionality, which 
we define as degrees of freedom of movement.  
METHODS & DATA 
Nine students (grades 5-8), three female and six male, were recruited from a New 
York State elementary school to participate in six two hour afterschool topology 
workshops over a three month period. These workshops led by the two principal 
investigators were offered as non-credit extra-curricular opportunities. The 



participants had not studied topology previously and their school math curriculum 
had not provided many opportunities for exploring spatial reasoning. The 
following questions guided our research: How do students solve problems that 
entail topological approaches to space? In what ways do gestural-haptic modalities 
factor into students’ spatial reasoning as they engage in problems through 
topological rather than Euclidean concepts? How does the concept of dimension 
factor into students’ spatial reasoning, and in what ways can problem solving with 
knots and knot diagrams develop a robust topological concept of dimension? We 
focused on knot theoretic activities that involved identifying, creating, modifying, 
comparing, sorting, decomposing and diagramming knots. Various media were 
used, such as strings, ropes, pipe cleaners, sculpie clay, ipads, and paper and 
pencils. The software Knot Plots generated dynamic images of knots which could 
be spun around and modified by the students. The focus of the activities was on 
how students moved back and forth between image, object and diagram, and how 
this entailed particular working concepts of dimensionality, directionality and 
orientation. Although the concepts of invariance and non-rigid transformations 
were introduced and explored at the first workshop, the PIs gave no other direct 
instruction, allowing students to develop collaboratively various knot theoretic 
tools as they problem solved, such as the (un)crossing number, the Reidemeister 
moves and the colorability constraints. Activities that shed significant light on the 
questions guiding the research were tasks that were: (1) open-ended and invited 
inventive diagramming practices for representing 3-D objects, (2) involved 
working with orientable and non-orientable surfaces, (3) entailed identifying 
discrete Reidemeister moves in continuously unravelling mathematical knots 
displayed in video. Project data consists of video and audio recordings of (a) 
workshops and (b) performance-based interview tasks completed 6 weeks and 6 
months after completion of the workshops, as well as (c) drawn artifacts produced 
by students during both workshops and interviews. In order to focus carefully on 
the students’ entire corporeal space as they worked, we coded the video data by 
tracking (a) student use of spatial language to describe their activity, and (b) hand 
gesture as a form of embodied orientation (in relation to a set of coordinate axes).  
THE VESTIBULAR LINE & THE VISUAL LINE 
Recent research on the kinesthetic perception of physical space and students’ 
deployment of gestural/haptic modalities in problem solving and other 
mathematical activity has begun to shed light on the complex facets of spatial 
sense (Nemirovsky & Ferrera, 2009; Núñez, Edwards, Matos, 1999). Hostetter and 
Alibali (2008), for instance, draw on Gibson (1979) and others to argue that 
perception and action are mutually determining, and that knowledge emerges 
through these co-adaptive processes. This “tight coupling of motor and perceptual 



processes” underscores the ways in which we activate sensorimotor processes 
when working with concepts (Hostetter and Alibali, 2008, p. 497).  
The mathematician Bernard Teissier describes “mathematical intuition” as being a 
fusion of two modes of perception, the visual continuum and the continuum of 
motion. Drawing on recent work in neurophyisiology (i.e Berthoz, 2005), Teissier 
(2011) puts forth what he calls the “Poincaré-Berthoz isomorphism” that links 
these two modes, suggesting that their fusion is at the source of mathematical 
invention “For instance, when we perceive a mathematical line or curve, we 
actually perceive two fundamentally different things: One, a “vestibular line” that 
is dynamic, seemingly flowing, “parametrized by time and Rythmed by the steps” 
(p.237) and two, a “visual line” associated more with boundaries and ambient 
spatial coordinates. In the case of the straight line, we either perceive it in terms of 
its intrinsic mobility (constant velocity) or as a “curve having everywhere the same 
orientation” in relation to a frame of reference (p. 238). The cognitive research of 
Berthoz (2005) suggests that the human mind makes strong links between the 
vestibular line and visual line, which accords with Poincaré’s insights, noted by 
Teissier, that “the position of an object in space is related to the set of muscular 
tensions corresponding to the movement we must make to capture it by the 
equivalent of a coordinate change” (p. 238). The fusion of these two perceptions 
generates a “protomathematical object” which then lends itself to all sorts of 
mathematizing. 
In order to study the fusion of these two modes of perception, we focus here on 
topology defined as the study of those properties of geometric objects that remain 
unchanged under bi-uniform and bi-continuous transformations (Debnath, 2010). 
Informally referred to as “rubber sheet geometry”, topology is concerned with 
bending, stretching, twisting, or compressing elastic objects (O’Shea, 2007; 
Richeson, 2008; Stahl, 2005). Despite thousands of years of studying the metric 
relationships of polyhedra, no one prior to Euler had studied the non-metric 
relationships of connectedness.1 Through the work of Gauss, Klein, Riemann and 
Poincaré, topology became the qualitative study of surfaces, manifolds, boundary 
relationships and curvature. Topology shifts our attention away from concepts of 
measure and rigid transformation, and focuses on the stretching and distortion of 
continuously connected lines and regions. In Geometry and the Imagination 
(1932/1952), David Hilbert claimed that “in topology we are concerned with 
geometrical facts that do not even involve concepts of straight line or plane but 

                                         
1	  We	  know	  that	  Liebniz	  was	  already	  familiar	  with	  the	  formula,	  and	  historians	  speculate	  that	  Descartes	  was	  aware	  
of	  a	  similar	  one	  (Richeson,	  2008).	  Although	  Euler’s	  solution	  to	  the	  bridges	  of	  Konigsberg	  problem	  (1736)	  comes	  
prior	  to	  his	  letter	  to	  Goldbach	  about	  polyhedra,	  the	  significance	  of	  the	  latter	  is	  noted	  here	  due	  to	  the	  way	  it	  breaks	  
with	  prior	  mathematical	  treatments	  of	  polyhredra.	  



only the continuous connectiveness between points of a figure”. In this paper, we 
are concerned with how particular aspects of topological thinking allow for a better 
fusion of the two kinds of perception mentioned above. For instance, topology 
deploys a more robust concept of dimension than what we normally find in the 
geometry curriculum –rather than the ‘size’ of a space, topologists refer to 
dimension in terms of degrees of freedom of movement. Also, the concept of 
orientation in topology is defined in terms of the capacity to move around space 
and return to a particular point “oriented” in the same direction as when the motion 
began, rather than in terms of a fixed Euclidean frame of reference. Finally, the 
topological focus on distortion and stretching more generally fuses the two kinds 
of perception, since it transforms the static line into a mobile continuously varying 
object.   
According to Smith (2006), “Euclidean geometry defines the essence of the line in 
purely static terms that eliminate any reference to the curvilinear (‘a line which lies 
evenly with the points on itself).” He contrasts this rectilinear concept with the 
“operative geometry” of Archimedes, in which the straight line was characterized 
dynamically as ‘the shortest distance between two points.’” (p. 148). Smith 
suggests this definition marks the line as a continuous operation and a “process of 
alignment” pursuing its own inherent variability.2 A more elastic definition of the 
line attributed to Heron is “A straight line is a line stretched to the utmost” 
(Metrica, 4. Gray, 1979, p.128). 
Student experiences with knots afford opportunities for developing an 
understanding of orientation and dimension as operative concepts rather than 
attributes. Instead of defining the line solely in terms of Euclidean measure and 
planar existence, knots embody a twisting stretching multi-dimensional line of 
flight that breaks through the plane. Knot theory emerged in the eighteenth and 
nineteenth century and developed within the field of topology. Mathematical knots 
are closed multi-dimensional (knotted) curves that are deemed equivalent if one 
can be deformed into another (note that this deformation is not a Euclidean rigid 
transformation). Mathematical knots take up the line as a non-linear and non-
planar process of becoming (without end or origin), a process of actualization 
whereby new dimensions and new entanglements unfold. The curve or line in n-
space is a multi-dimensional entity, suddenly possessing perspective and depth. 
One can relax the knot and loosen its crossings, and then imagine crawling along 
the rope, following its path into the depth of the page. The knot has no interior or 
exterior; it is all line, or all outside. Recent interest in including knot theory in the 
middle school curriculum points to how it helps students develop spatial reasoning 
                                         
2	  According to Netz & Noel (2007), Archimedes treated diagrams as physical models while attending more 
to the “broader, topological features of a geometrical object” (Netz & Noel, 2007, p. 105).	  



through visual and tactile exploration of both quantitative and qualitative invariants 
(Adams, 2004; Handa & Mattman, 2008).  Knot theory offers students a creative 
and generative approach to ‘spatial reasoning’. It captures the dynamic multiplicity 
of space as a process of dimensional unfolding. One is always in the middle of a 
knot, pursuing its lines of flight.  
KNOTS AND KNOT DIAGRAMS   
From 1988-1991, Carol Strohecker ran a “knot lab” in an urban elementary school 
where 20 fifth graders explored topological thinking through the study of knots. 
Students used string and other media to compose knots, developing and discussing 
strategies for doing so. Using the snake method, which involved placing the string 
on the table, identifying a starting point and fixing one end of the string while 
moving the other end, students were able to perceive the relationships between 
strands differently, conceptually integrating the more entangled parts with the 
various loops that fed into them. The use of this method also seemed to occasion 
students’ efforts at re-orienting their knots (rotating them on the desk), which 
further developed their “body syntonicity” (Papert, 1980) in that they began to 
decenter themselves as a perceiver located at a fixed position, and instead 
identified with the mobility and disorientation embodied in the knot. Strohecker 
suggests that the medium itself (the pliable string) afforded students an opportunity 
to develop their spatial reasoning in this way, describing how “many of the 
children involved their bodies in expressing their conceptions of knots and knot-
tying, often relying on their arms or legs to represent ends of string moving into the 
form of a knot.” (p.6). She also indicates that student language use while 
describing their knots, for instance expressions such as “up/down, top/bottom, 
above/below, over/under, in/out”, revealed how they worked the string as though it 
were a boundary, dividing space into neighbourhoods that were either in or outside 
of the knot. Her research clearly shows that students dealt explicitly with 
topological concepts.  
As Kuechler (2001) suggests, the capacity of the knot “to fashion decentred spatial 
cognition” (p.82) explains in part our fascination with knots in textiles and 
symbolic forms. She offers an “ethnography of knots” pointing to the prevalence 
and power of knotted effigies and knotted patterns across various cultures and 
times. Knots seem to refuse to be seen from one particular point of view or 
perspective. Knots are all movement along a curvilinear line, evoking fluid spatial 
relationships. “Each knot is, in a sense, its own universe, which invites 
contemplation of its topology both as it is being formed and as a completed object” 
(Strohecker, 1991, p. 215). 



For middle school students, one of the biggest challenges – as well as being one of 
the richest areas for developing spatial reasoning – involves tasks of creating and 
decoding diagrams of knots. Knot diagrams introduce depth into the plane, 
conjuring a virtual dimension within the two-dimensional surface. The crossings in 
knot diagrams create a multi-dimensional effect, suggesting a layering precisely 
where Cartesian geometry would have imposed an intersection. Making sense of 
knot diagrams demands that one construe an “over/under” relationship in two 
dimensions and that one follow the continuity of a line as it seems to leap off the 
surface of the page. Moreover, knots are defiantly without orientation, and yet 
diagrams are attempts to capture and orient knots on the plane. Students have to 
decide what is in the foreground/background (and in some cases how that 
relationship might be evoked) and decide on a perspective and an orientation. 
Because of the absence of axes and other straight lines to structure one’s vision, 
and because students are learning to pay attention to topological relationships 
rather than Euclidean ones, drawing knot diagrams often entails positioning oneself 
(as the observer) in multiple and diverse locations. Châtelet (2006) argues that 
knots and knot diagrams disrupt fundamental Euclidean spatial practices. They 
introduce a new manner of intervention and a new way of making mathematical 
images. They express both entanglement and rupture in the way they disobey the 
plane. Thus the knot and its diagram contest the usual epistemological barrier 
between geometric space and corporeal space. Thus any attempt to locate the knot 
within a mathematical frame of reference is complicated by its 'tied' nature, its 
folds and twists, connectedness and relationality.  
ORIENTATION, MOVEMENT AND CORPOREAL SPACE 
We see from the literature that (dis)orientation and dimensionality figures 
prominently in our engagements with knots. Ahmed (2010) argues that orientation 
is an essential aspect of spatial sense making. Put simply, “orientations are about 
the direction we take that puts some things and not others in our reach.” (Ahmed, 
2010, p. 245). Body orientations thus shape and map space by generating operative 
axes around which we define our movements. Thus orientation marks a “here” and 
a “now” from which we proceed. One might even suggest that orientation and 
motion are mutually implicated. With reference to the phenomenology of Husserl, 
Ahmed (2010) suggests that orientation marks a “zero-point” or starting point 
“from which the world unfolds” (p. 236). This implicit structuring of a zero-point 
for the body entails a sense of movement or potential movement, and this in turn 
conditions our perception of what is foreground and what is background. Indeed, 
the perception of depth (and dimensionality) is not as simple as one might first 
imagine, as it depends on a tactile-kinesthetic fusion of sensory impressions. The 
body is thus “something that I move with, not something I move, i.e., it has the 



characteristic of direct motility – I do not have to place my body in order to move 
it.” (Rush, 2008, p. 18).  
CASE STUDY 
In this section, we discuss data collected during the post-intervention interviews 
with the student participants of our study. We focus on one task where the students 
were shown a 2-D depiction of a knot (figure #1), asked to explain if and how they 
might simplify the knot, and then asked to identify key moves in a video of the 
same knot unravelling into the unknot. We discuss below how Maya moves back 
and forth between the vestibular line and the visual line as she engages with this 
picture of a knot. The image demands a great deal of depth perception since there 
are loops under loops under loops. This layering of the rope makes for a complex 
perceptual task. Each time one focuses on one crossing and ‘sees’ a particular 
relationship of over/under on a plane of reference, one is then forced to dislocate 
that plane of reference when either the same two strands reverse the relationship of 
over/under at the adjacent crossing or a third strand appears beneath the other two 
and the student has to penetrate the imagined plane to incorporate this third strand 
in making spatial sense of the relationships. Despite the seeming complexity of the 
knot, it is reducible to the unknot after a series of moves. 

                                     
                      Figure #1                Figure #2 
Maya is first asked to count the crossings. She tilts her head and body as her 
fingers trace the path of the knot (figure #2). She names the crossings as either 
over or under because her finger follows the vestibular line and thus there is a 
relative experience of over or under. Then she stops and looks up and says, “but if 
you look at it from the other perspective wouldn’t it be over or under?” (0:15) 
When asked to say more, she removes her hands, and explains, “You can see this 
one going under, this one going under, but you have to like focus on one and the 
one that you focus would go over or under. (0:52) 
In so doing, Maya is shifting from perceiving the vestibular line to perceiving the 
visual line. With the visual line, the concepts of over and under cannot be assigned 
to a crossing unambiguously. In other words, at each crossing there are two 
strands, so there is no sense that a crossing has a definitive over or under 
designation. Such a designation only makes sense if one imagines oneself actually 
moving along one of the strands on the vestibular line.  



Asked where she would start in order to simplify the knot, she picks a strand 
(lower right for her, labelled A on figure #3 below) and gestures as though she had 
used her pointer finger to stretch and pin the strand (Figure #4). She affixes this 
finger to the page, as though she were holding down the rope, while her other hand 
takes on the gesture of a pincher or grabber, hovering and rocking slightly back 
and forth in the air above the knot.  
  
 

 

         Figure #3     Figure #4    Figure #5 
She then places both hands on the table and she taps her fingers rhythmically and 
in unison while she thinks. She switches her first answer and picks a second strand 
(labelled X on figure #3), and then she gestures to pull and stretch the strand out 
from under strand B. She flips her hand palm up (figure #5) to show that it would 
“go like that”. This is not a pointing gesture, even though it looks like one. It is a 
flipping gesture that is meant to embody the inversion required as the loop moves 
from background to foreground. The hand is working as a proxy here as she 
embodies the new sense of orientation. She could have kept her hand oriented as in 
figure #3 and simply indicated the grabbing or pincering of the strand and its being 
stretched to a new location, but in order to capture the new relative relationships 
between over and under, she inverts her hand so that it’s palm up. This is 
significant. It shows how she is following the vestibular line using the orientation 
of her hands (palms up or down or other). What was under is now over, what was 
up is now down – she is back to following the vestibular line and enacting – 
through her hands – the changing relationships. In this sense, the hands are proxies 
for the disorientation embodied in the knot. In relation to the space of the room, 
Maya is upside down and looking up at the backside of the knot, as though she 
were on the other side of the paper. Maya is shifting her projected perspective on 
the knot as she engages with the task. In other words, she is moving around the 
knot – within, behind, beside, on top – in ways that speak to her embodied 
engagement. It is usually her left hand that performs the flipping while the right 
hand performs the stretching. She then pauses saying “Oh, this one’s complicated” 
and spins the sheet of paper around, until it is oriented as in Figure #6.  
 
 

                                  

Figure #6                        Figure#7 First Move           Figure#8 Next Move        Figure #9 Next Move 



Rotating the paper shows that she is engaged with the disorientation of the knot 
and that she is aware that the image isn’t locked into a particular perceptual grid of 
‘proper’ up/down orientation. She then confidently suggests a series of moves: 
pulling strand C out, flipping strand C over D and towards B, pulling strand A out, 
and then flipping strand E over the body of the knot. Although the first two moves 
don’t seem to simplify the knot, the combination of these last two moves is indeed 
a move that will begin the unravelling (notice that strand E is linked to strand A in 
such a way that the two are part of a loop that is buried beneath the knot, and three 
of the adjacent crossings are under the rest of the knot). One can grab and stretch 
the loop towards the left, eliminating these three crossings (Figures #7).  
One of the challenges in this task is ‘seeing’ into and behind the knot, shifting 
one’s imagined perspective, and noticing these kinds of patterns related to depth 
and adjacency.  This entails shrinking and stretching lines, which we found to be 
associated with student gesturing of both hands simultaneously. One hand was 
consistently used to gesture the pulling and stretching of a particular strand, but 
both hands were used – as though at either end of an elastic – when the students 
wanted to eliminate a crossing using Redeimester moves #2 and #3.  
CONCLUSION 
Studying students’ experiences with topology revealed how orientation is a 
complex component of spatial sense. Analysis of video data showed how students’ 
corporeal space entailed a moving rather than fixed perspective, and that gestures 
embodied this implicit mobility. Rather than seeing the gestures as iconic or 
indexical, we analyze them as embodiments of perspective. Students’ gestures 
reveal how they follow both the vestibular line and the visual line as they make 
sense of knots. We see here how the two modes of perception – the visual 
continuum and motion continuum – were taken up in her gestures as she pursued 
the shifting orientation entailed in the diagram. 
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