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Whereas students’ conceptual understanding of variables and equations has often been 
investigated, little is known about students’ pathways to understanding equalities, i.e. 
the equivalence of expressions as generational instead of transformational activities. 
The case study reconstructs two main conceptual challenges that must be overcome on 
the pathways to conceptual understanding for the equivalence of expressions: (1) lim-
ited degrees of generality for variables and geometric figures, and (2) operational ver-
sus relational perspectives on expressions. 
 
THEORETICAL AND EMPIRICAL BACKGROUND  
Operational and relational meanings of the equal sign 
Students’ limited understanding of algebraic equality has often been problematized in 
terms of the dichotomy between relational and operational interpretations of the equal 
sign (Kieran, 1981; McNeil & Alibali, 2005). Although many students only interpret the 
equal sign operationally as a prompt to calculate the value, algebraic thinking also ne-
cessitates the relational meaning as signifying symmetric structural relations between 
left and right side of the equal sign.  
Whereas most research has focused on equations like 7x + 28 = x + 4, the relational in-
terpretation of the equal sign is not only addressed (A) in algebraic equations, but also 
in three other important aspects: (B) arithmetical identities like 7 · (10+4) = 7·10 + 7·4, 
(C) equivalence of expressions like 7 · (x+4) = 7x + 7·4, being generalized from (B), 
and (D) contextually bound identities like “Right triangles with hypotenuse c and legs a, 
b satisfy a²+b²=c²”  (cf. Prediger, 2010 for these aspects). Aspect (B) refers to arithme-
tic; (A), (C) and (D) to algebra, but with different meanings of the variable: Whereas 
variables in equations (A) serve as unknown to be solved, variables in aspects (C) and 
(D) serve as generalized numbers (Usiskin, 1988, p. 17). Hence, generalization is cru-
cial for understanding algebra. As students’ understanding of aspect (C), equivalence of 
expressions, has much less been investigated and fostered than of equations (exceptions 
are Demby, 1997; Kieran & Sfard, 1999), we defined this aspect as the core subject of 
our design research project (cf. Prediger & Zwetzschler, 2013, for an overview).  
In this paper, we present a small descriptive study within a larger design research pro-
ject that focuses on the empirical specification of conceptual challenges that students 
encounter while developing conceptual understanding for the equivalence of expres-
sions. We investigate these individual conceptions in a learning arrangement that pro-
motes generational activities before transformational activities (Mason et al., 1985), as 
will be further explained in the next section. 



  
Three meanings for the equivalence of expressions  
In our approach, we generalize the operational-relational dichotomy from the equal 
sign to the equivalence of expressions: How should students understand equivalences 
like a · b + 2 · b · h/2 = b · (a+h)? In line with the wrong priority attributed to opera-
tional meanings of the equal sign (Kieran, 1981; McNeil & Alibali, 2005) is the fact that 
many students (and some curricula) think about equivalence of expressions only in 
terms of transformational activities. But how to ground these transformation rules in 
conceptual understanding? Mathematically, they can be derived from the basic arithmet-
ical laws (like commutativity and distributivity). But as Demby (1997) has pointed out, 
the general deduction from arithmetic to algebra is too complex and abstract for many 
learners (cf. Lee & Wheeler, 1989). That is why a learning arrangement that fosters the 
development of conceptual understanding of equivalence of expressions should first in-
volve its inclusion in generational activities, in which algebraic expressions are not only 
understood as a system of meaningless signs (being transformed according to arbitrary 
rules), but as pattern generalizers of arithmetical or geometrical pattern (Mason et al., 
1985, p. 46 ff.; Kieran 2004, p. 23). Within these activities, a relational understanding 
of the equivalence is achieved by comparing expressions with respect to equivalence 
Kieran & Sfard, 1999) To sum up, three meanings of the equivalence of expressions that 
are to be acquired; first, (a) and (b), then (c): two expressions are equivalent, if… 
(a) description equivalence: …, if they describe the same phenomenon (same geometric 

pattern, same situation, same function, …);  
(b) insertion equivalence: …, if they have the same value for all inserted numbers; 
(c) transformation equivalence: …, if they can be transformed into each other according 

to the transformation rules.                                          (Malle, 1993; Prediger, 2009) 
For (a), the description equivalence, Kieran & Sfard (1999) compare functions where 
the table representation immediately leads to (b), the insertion equivalence. Our Tasks 
in Figure 1 (Prediger et al., 2011) follow Mason et al. (2005) and Malle (1993) who re-
fer the descriptions to be compared to areas of varying geometric shapes. In this paper, 
we reconstruct critical moments in the learning pathways towards description and inser-
tion equivalence; the later completion by transformation equivalence is not treated here. 

(I) Which students calculate the same area?  
And which of the expressions calculate the area 
of the given geometric shape correctly? 

(II)  Insert different numbers for the variables. 
Check which of the expressions  
are equivalent.  

     

Fig. 1. Tasks (I) for experiencing description equivalence and (II) for insertion equivalence 



  
Generalizing the operational-relational dichotomy from the equal sign to expressions, 
we developed Task I to prioritize relational perspectives on algebraic expressions 
against purely operational perspectives. That means, we do not emphasize the activity of 
calculating values of expressions, but of formulating, interpreting and structuring ex-
pressions while relating them to geometric shapes. However, our empirical analysis will 
show (in Section 3) that students still adopt other variants of operational perspective 
which produces conceptual challenges for their pathway to description equivalence.  
Additionally, we will show that the degree of generality is a relevant source of difficul-
ties: The insertion equivalence is quite natural for students for one specific insertion, 
namely the specific side lengths in the given geometric shapes; this interpretation of 
variables is known as “letter as object” (Küchemann, 1981). However, two expressions 
are only equivalent if they have the same value for all inserted numbers. We will show 
how a limited degree of generality (being transferred from geometry to algebra) forms a 
second conceptual challenge for understanding general insertion equivalence. 
METHODOLOGY OF THE CASE STUDY 
This study is embedded in a larger design research project (Prediger & Zwetzschler, 
2013) that follows the methodology of Cobb & Gravemeijer (2006) with its dual aim of 
deepening the understanding of learning processes and designing learning arrangements. 
Therefore, it applies iterative cycles of (re)design and empirical investigation. Here, we 
concentrate on one step of empirical investigation with following research questions: 
Q1 Which conceptions do students activate or develop in a learning arrangement desig-

ned to foster the conceptual understanding of description and insertion equivalence?  
Q2 How do the individual conceptions of variables, expressions and geometric shapes 

influence the learning pathways? Where do conceptual challenges appear?  
 
Data gathering in design experiments  
The tasks presented in Table 1 were part of the teaching-learning arrangement used for 
twelve design experiments in laboratory settings (Komorek & Duit, 2004). A teacher 
worked with 12 x 2 students of grade 7 to 9 in German comprehensive secondary 
schools), for three to five sessions of 45 to 60 minutes, the presented task lasted 20 to 50 
minutes. All experiments were videotaped and partly transcribed. 
 
Data analysis: Vergnaud’s analytical model of concepts- and theorems-in-action 
For the interpretative analysis of individual conceptions (research question Q1), we op-
erationalized “conceptions” by adapting the theoretical constructs concepts- and theo-
rems-in-action from Vergnaud’s theory of conceptual fields, as this theory offers “a 
fruitful and comprehensive framework for studying complex cognitive competences and 
activities and their development” (Vergnaud 1996, p. 219).  



  
The first step of our analytic procedure allows us to reconstruct, for each of students’ 
visible activity or utterance, the underlying operational invariants: Theorems-in-action 
are defined as “proposition that is held to be true by the individual subject for a certain 
range of situation” (Vergnaud 1996, p. 225). For adapting Vergnaud’s construct to our 
specific needs, we symbolize theorems-in-action by <…> and always formulate the 
purpose and the means, e.g., <For calculating the value of an algebraic expression, I can 
replace the variable by the specific measures in the drawing>. These theorems-in-action 
are shaped by concepts-in-action, being defined as “categories (...) that enable the sub-
ject to cut the world into distinct (…) aspects and pick up the most adequate selection of 
information” (ibid.), e.g., ||Variable as unique hidden number||.  
In the second step of analysis, we categorize the reconstructed concepts-in-action ac-
cording to their subject (variable, expression, connection between expression and geo-
metric shape, …), their degree of generality and the underlying operational or relational 
perspective. This allows us to identify connections that could be interpreted as sources 
for typical conceptual challenges (research question Q2). 
 
RESULTS: RECONSTRUCTING CONCEPTUAL CHALLENGES  
Without being able to provide wide empirical evidence from the case studies, we pre-
sent short extracts of our analysis, show typical moments in the processes and discuss 
the connection between the reconstructed theorems- and concepts-in actions. 
 
Episode 1 of Paula & Daniel: Degree of generality for variables and figures 
Paula and Daniel (grade 9) collaborate on Task I (Fig. 1). Before Turn 62 they evaluate 
two given algebraic expressions as correct by relating sub-expressions to sub-areas of 
the figure, guided by the concept-in-action ||Relation between expression and shapes as 
corresponding by substructures||. For Till’s expression a· b + ½ · a · h, they don’t find 
structural correspondences and calculate instead:  

62  Paula: So 0.5 · a · h, you need values to calculate it.  
…   
66 Daniel: Therefore, we would need this height here. 
67 Paula: Ah, just count it, don’t know. That’s 1 2 3 4.  
…   
71 Paula: So a was 8, right?  
72 Daniel: Yes 
73 Paula: 8 (writes down ), so the half would be, that would be 4 hm  

(counts the units, then counts side lengths and calculates the area) 
	
   	
   	
  

Paula’s activities in Turn 62-73 are guided by her individual theorem-in-action: <For 
finding out which expression is correct, I can calculate the value of the expressions.>.  
Beyond it, we reconstruct her concept-in-action ||Relation between expression and shape 
as decidable by quantities||. Both students search for specific measures for calculating 
(Paula in Turn 62, Daniel in Turn 66). 



  

Table 1.  Degree of generality as a challenge on the pathway to insertion equivalence 

 Specific General 
Conceptions for  
variables hidden specific number changing / generalized numbers  

Conceptions for  
geometric shapes 

specific drawing with  
fixed side length  

general figure with  
varying side lengths 

Conceptions for  
equivalence of expressions 

equality of values =  
specific insertion equivalence  

general insertion equivalence / 
general description equivalence  

 
They solve their need by the theorem-in-action <For calculating the value of an algebra-
ic expression, I can replace the variable by the side lengths in the drawing> (Turn 71ff), 
beyond which we reconstruct the concept-in-action ||Variable as hidden specific num-
ber||. Like many other students in our study, Paula und Daniel are guided by their indi-
vidual focus on specific lengths. A short while later, they compare algebraic expressions 
by their values for a specific insertion:  

93 Daniel: that was Till (writes    ) 
94 Paula: mhm – Maybe we calculate about Ole, which result is the right one. 
	
   	
   	
  

The theorem-in-action <For comparing two expressions, I can compare the results of the 
expressions> assists Paula to correctly evaluate Till’s and Ole’s expression as equiva-
lent. However, the underlying concept-in-action ||Equivalence as equality of results|| is 
only partially correct, since it limits the insertion equivalence to specific numbers. Their 
limited degree of generality for the variables is connected to a well-known misconcep-
tion for the geometric shapes: Paula and Daniel do not apply the geometric concept 
||Geometric shape as general figure|| in which changeable side lengths (and as a conse-
quence the form of the shape) are considered, but instead they apply the individual con-
cept-in-action ||Geometric shapes as specific drawings|| (cf. Parzysz, 1988) in which 
side lengths are fixed to the specific drawn measures.  
Paula’s and Daniel’s restriction to ||Equivalence as specific insertion equivalence|| and 
||Variable as hidden specific number|| becomes an evident obstacle for developing the 
concept of general insertion equivalence when working with Task II where the fictitious 
student Till inserts several numbers for comparing the expressions in the next scene. 

214 
… 

Paula: 
 

We filled in the right numbers and he took anyones? 
 

217 
218 

Daniel: 
Teacher: 

Huh? That’s not possible.  
Why is that impossible?	
  

 219 Daniel: You just can’t insert different numbers.	
   
	
  

Due to their concept-in-action ||Variable as hidden specific number||, their theorem-in-
action <For comparing two expressions, I can compare the results of the expressions> is 
limited to one insertion (the specific drawn lengths), so that they can’t get access to the 
general insertion equivalence. 



  
From this snapshot and comparable episodes from other case studies, we conclude that 
at this point in the learning process, the individual concepts-in-action on variables and 
geometric shapes like those of Paula and Daniel provide a challenge for the develop-
ment of conceptual algebraic understanding. Although in the later part of the design ex-
periment, many students succeed in overcoming this challenge, we emphasize that in the 
first encounter, the geometric interpretation of expressions can become a source of a 
conceptual challenge if limited geometric understanding is activated.  
 
Episode 2 of Jan & Niclas: Intermediate generality in operational perspectives 
Jan and Niclas (grade 7) also work on Task I and start by finding an own way of calcu-
lating the area. Niclas struggles with Ole’s expression a · (b + h/2). 

56	
   Niclas:	
   Me, for example, I would know how to calculate the area,  
but the whole expression.	
  

…	
   Niclas:	
   (explains correctly how he would calculate the area of the drawing).	
  
61 Teacher: Mhm, just write it down anyway. 
…  (Jan wants to know, if he got right in understanding Niclas.) 
63 Niclas:  

 
… can I just do it with units, that I count this (he first touches the lower side 
and afterwards the height of the triangle) so or just six units?  

…   
66 Jan: … there is nothing specified.  
67 Niclas: Yes 
68 Jan: There are none, so now that is, I mean, how many, let me say,  

that are 3 meters (hints to side b) that are 4 meters (hints to side a). 
It is only now that it is specified how long the sides are. 

69	
   Teacher:	
   How long could they be, the sides?	
  
70	
   Jan:	
   Different, as you can actually choose, x-variable.	
  	
  
71 Teacher: mhm 	
  
72 Niclas: Or maybe one unit as one meter, that are 16 meters (hints to side 

a) that are 9 meters (hints to side b, gives a shrug), aren’t they?	
   
73 Jan: Also possible. 
	
   	
   	
   	
  

Both boys operate with the individual theorem-in-action <For calculating the area of the 
given shape, I can insert values for the variables>, but while negotiating which value to 
insert, divergent concepts-in-action appear. Whereas Jan emphasizes that different val-
ues can be inserted (Turn 68, 70) and thus activates a high degree of generality, Niclas 
first starts with the concept-in-action ||Variable as place holder for specific numbers|| in 
Turn 63. Reacting on Jan’s objection in Turn 72, he widens his theorem-in-action to 
<For calculating the area of a given shape, I can insert the side length with variable 
scales>. Thus, he changes his concept-in-action into ||Variable as a place holder for spe-
cific numbers but variables scales||. This concept-in-action is in line with the geomet-
rical concept-in-action ||Geometric shape as drawing with specific side length but varia-
ble scales||.  



  

Table 2.  Operational – relational dichotomy as a challenge on the pathway to description equivalence 

 Operational perspectives on 
variables and expressions 

Relational perspectives on  
variables and expressions 

Main activities calculate formulate, interpret, structure 

Conception for  
algebraic expression	
   prompt to calculate	
   description for structures (e.g., pat-

tern) for unknown / general numbers	
  

Conceptions for  
variables 

place holder for numbers;  
numbers must be inserted  
before dealing with expressions 

specific numbers or  
changing / generalized numbers  

Correspondence between  
algebraic expression  
and geometric shape 

Relate only quantities  
(numbers, values <->  
 side length, areas)  

Relate also structures  
(operations or subexpressions <-> 
substructures and parts of shape) 

Conceptions for  
equivalence of expressions 

only insertion  
equivalence 

insertion and description  
equivalence 

 
Since this concept-in-action is still restricted to geometrically similar drawings, we clas-
sify Niclas’ concepts-in-action as having an intermediate degree of generality (locating 
between the columns of Table 1). With these higher degrees of generality, their further 
pathway to insertion equivalence is smoother than that of Daniel and Paula.  
However, their pathway to description equivalence is challenged by serious difficulties 
in connecting the shape and the expression. The problem first appears in Turn 56, when 
Niclas claims not to be able to formulate his  own expression. His use of variables 
seems to be restricted to inserting and calculating, so we reconstruct the operational 
concepts-in-action ||Expression as prompt to calculate|| and beyond that ||Variable as 
place holders||, but not ||Expression as description for structures|| (see Table 2). In con-
trast to Daniel and Paula who can (sometimes) activate ||Relation between expression 
and shapes as corresponding by substructures||, Niclas and Jan only draw connections 
between expressions and shapes when the expressions are written with numbers instead 
of variables. Later, the teacher prompts them to find sub-expressions with variables in 
the figure:  

406 Teacher: Mhm and why did Till actually first multiply a times b and then a times h – 
and afterwards divide that by two? – Do you have an idea how he could have 
found that out?  

407 Niclas: Uff – well, maybe to make it easier or something like that. 
408 Jan: Well, actually he did a times h… 
409 Niclas: …Because he has – he has these lengths [hints to a and b] or this infor-

mation [hints to the expressions] this is what he already has, that’s why you 
can do this … [interrupts himself, break 8 sec.]   

410 Jan: Do you know how Ole works? 
411 Niclas: Hm – no idea [laughs] – how you can find it out? 

 



  
In Turn 409, Niclas explicitly refers to the algebraic expressions and the figure, but in-
terrupts himself when trying to relate them to each other. The formerly used individual 
theorem-in-action <For connecting the shape and the expression, I can insert the side 
lengths> is explicitly excluded by the teacher’s prompt to consider the sub-expressions 
with variables, but he does not find any other way to relate the shape and the expression. 
We draw this challenge back to a completely operational perspective of the expression, 
namely the concept-in-action ||Expressions as prompt to calculate|| which is directly 
connected to ||Variable as place holders|| (see Table 2). Turns 406-411 show how these 
concepts-in-action hinder the boys’ capacity to relate the shape and the expression.  
Although these concepts-in-action have already been located in Table 2 (for easier read-
ing), the systematization of the observed problems and logical connections have only 
been conducted after comparing several cases in the last step of data analysis. Table 2 is 
the condensed outcome of these comparisons. It generalizes the well-known relational-
operational dichotomy from the equal sign to variables and expressions. The restriction 
to the main activity in the operational perspective (calculating expressions) has conse-
quences for the variable as well as for the correspondence between algebraic expression 
and geometric shape. For the pathway to description equivalence, operational perspec-
tives on expressions must be complemented by relational ones that focus on own formu-
lations of expressions, structures and interpretations. Unless the variable is considered 
only as place holder and the expression only as prompt to calculate, the correspondence 
between expressions and shapes cannot be drawn by relating substructures. In this way, 
the concepts-in-actions in the different lines of Table 2 are deeply connected and the 
transition from operational to relational perspectives is crucial. 
 

CONCLUSION AND OUTLOOK 

The empirical analysis of typical 
challenges showed two important 
dimensions in which students 
have to develop their initial con-
ceptions on their pathways to a 
conceptual understanding for the 
equivalence of expressions, 
namely to general insertion and 
description equivalence: (1) the 
degree of generality attributed to 
variables and geometric shapes 
(Table 1; vertical axis in Fig. 2), 
and (2) the operational versus re-
lational perspectives on variables, expressions and - as a consequence - the relation be-
tween expressions and geometric shapes (Table 2; horizontal axis in Fig. 2). Although 
the four students finally succeeded in overcoming these challenges, our extracts of their 

  
General  general  

insertion equivalence 
(Episode 2b: Jan) 

general insertion and  
description equivalence  

(Intended Understanding) 

 intermediate state  
(Episode 2a: Niclas) 

 

Specific only specific  
insertion equivalence 

only specific insertion and  
description equivalence 

(Episode 1: Paula and Daniel) 

         Operational  
        perspectives  

Relational  
perspectives  

 Fig. 2.   Overcoming conceptual challenges in two 
dimensions: Overview on the cases  



  
processes show typical moments and intermediate states of the development in these 
two dimensions. The first episode with Paula and Daniel shows how a specific under-
standing of variables and geometric shapes limits students’ conceptions of equivalence 
of expressions. In the second episode, Jan provides a higher degree of generality, and 
Niclas adopts an intermediate conception on variables as specified numbers with varia-
ble scales. Jan and Niclas additionally struggle with their purely operational interpreta-
tion of expressions, variables and the connection between geometric shapes and algebra-
ic expressions which hinders their pathway towards description equivalence, under-
standing expressions as equivalent when they describe the (area of the) same shape.  
In the larger design research project, these findings initiated the design of additional 
tasks that help to overcome these challenges. For attaining higher degrees of generality, 
the figures are now drawn in several versions, which foster students realization that sev-
eral drawings with different side lengths can belong to the same figure, and that varia-
bles signify changing lengths (cf. Prediger & Zwetzschler, 2013). 
For widening students’ perspectives from purely operational also to relational perspec-
tives, we integrated tasks that focus on structural connections between geometric shapes 
and (first arithmetic and later algebraic) expressions by making explicit the strategies 
for finding substructures in expression and shapes. One example is given in Task (III) in 
Fig. 3 (Prediger et al., 2011). To find out which elements belong together, the students 
need to adopt a relational perspective. The focus on substructures is strengthened by the 
verbalization of strategies as a third element that serves as conceptual bridge to over-
come the gap between the drawing and the expressions. The design experiments in the 
next cycles showed that this task encourages students to draw connections and gain 
hence access to the learning pathway towards understanding description equivalence.  
 

 

 

 

 

 

 
  

 

I have split the figure and 
moved one part. 

I doubled something,  
I have to regulate that. 

I have added something; that’s 

what I must subtract later. 

I have split the figure twice 
and moved one part. 

     [(8+3) . 4]  : 2   (3 + 8) · (4 / 2)  

Fig. 3. Design of a task that focuses on drawing connections of substructures 

(III) What belongs together?  
Add the missing expressions. 
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