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The reported study on mental algebraic equation solving is part of a larger research 
programme, aimed at better understanding the potential of mental mathematics 
activities with objects other than numbers. Through outlining the study details, and 
the activities students engaged with, I report on the variety of interpretations given to 
what solving an algebraic equation is. Focusing as well on the nature of students’ 
engagement, I discuss some implications/potential for algebra teaching and learning. 

CONTEXT OF THE STUDY 
To highlight the relevance and importance of teaching mental calculations, 
Thompson (1999) raises the following points: (1) most calculations in adult life are 
done mentally; (2) mental work develops insights into number system/number sense; 
(3) mental work develops problem-solving skills; (4) mental work promotes success 
in later written calculations. These aspects stress the non-local character of doing 
mental mathematics with numbers, where the skills being developed extend to wider 
mathematical abilities and understandings. Indeed diverse studies show the 
significant impact of mental mathematics practices with numbers: on students’ 
problem solving skills (Butlen & Peizard, 1992; Schoen & Zweng, 1986), on the 
development of their number sense (Boule, 2008; Murphy, 2004; Heirdsfield & 
Cooper, 2004), on their paper-and-pencil skills (Butlen & Peizard, ibid.) and their 
estimation strategies (Heirdsfield & Cooper, ibid.; Schoen & Zweng, ibid.). For 
Butlen and Peizard (ibid.), the practice of mental calculations can enable students to 
develop new ways of doing mathematics and solving arithmetic problems that the 
traditional paper-and-pencil context rarely affords because it is often focused on 
techniques that are in themselves efficient and do not create the need for doing 
otherwise. There is thus an overall agreement, and across contexts, that the practice 
of mental mathematics with numbers enriches students’ learning and mathematical 
written work about calculations and numbers: studies e.g. conducted in US (Schoen 
& Zweng, ibid.), France (Butlen & Peizard, ibid.; Douady, 1994), Japan (Reys & 
Nohda, 1994), and UK (Murphy, ibid.; Thompson, 1999; Threlfall, 2002). 
This being so, as Rezat (2011) explains, most if not all studies on mental mathematics 
focus on numbers/arithmetic. However, mathematics taught in schools involves more 
than numbers. This triggers interest in knowing what teaching mental mathematics 
with mathematical objects other than numbers might contribute to students’ 
mathematical reasoning. In this study, issues of algebra equation solving are probed 
into. Thus, what learning opportunities solving algebraic equations mentally offer 
students? What mathematical activity do students engage in? What mathematical 
strategies emerge? This paper reports on the nature of strategies used by a group of 
12 students, and the varied meanings developed about “solving algebraic equations”. 



  
THEORETICAL GROUNDING OF THE STUDY: AN ENACTIVIST FRAME 
Recent work in mental mathematics points to the need for a better understanding and 
conceptualizing of how students develop mental strategies. Faced with significant 
varieties of students’ creative solutions and with dissatisfaction about their 
“classification” in known and precise categories, researchers have begun to criticize 
the notion that students “choose” from a toolbox of predetermined strategies in order 
to solve problems in mental mathematics. Threlfall (2002) insists rather on the 
organic emergence and contingency of strategies in relation to the tasks and the 
solver (e.g. what he understands, prefers, knows, has experienced with those tasks, is 
confident with; see also Butlen & Peizard, 1992; Rezat, 2011). This view on 
emergence of strategies is also outlined in Murphy (2004), who discusses Lave’s 
situated cognition perspective on mental strategies as flexible emergent responses, 
adapted and linked to a specific context and situation.  
In mathematics education, the enactivist theory of cognition has been concerned with 
issues of emergence, adaptation and contingency of learners’ mathematical activity 
(from the work e.g. of Maturana & Varela, 1992; Varela, Thompson & Rosch, 1991). 
Therefore, aspects of the theory are used to ground this study in its intention to make 
sense of students’ strategy development and mathematical activity. In particular, 
Varela’s (Varela et al., 1991) distinction between problem posing and problem 
solving offers a preliminary answer to questions about emergence and the 
characterization of strategies generated for solving tasks. 
For Varela, problem-solving implies that problems are already in the world, lying 
“out there” waiting to be solved, independent of us as knowers. In contrast, Varela 
explains that we specify, we pose, the problems that we encounter through the 
meanings we make of the world in which we live, which leads us to recognize things 
in specific ways. We do not “choose” or “take” problems as if they were lying “out 
there,” objective and independent of our actions: we bring them forth. The problems 
that we encounter and the questions we ask are thus as much a part of us as they are a 
part of our environment: they emerge from our interaction with it, as we interpret 
events as issues to address, as problems to solve. Thus, we are not acting on 
preexisting situations: our interaction with the environment creates the possible 
situations for us to act upon. The problems that we solve, then, are implicitly relevant 
for us because we allow these to be problems for us. 
Hence it is claimed that reactions to a task do not reside inside either the solver or the 
task: they emerge from the solver’s interaction with the task, through posing the task. 
If one adheres to this perspective, one cannot assume, as René de Cotret (1999) 
explains, that instructional properties are present in the (mental mathematics) tasks 
offered and that these will determine solvers’ reactions. Strategies emerge in the 
interaction of solver and task, influenced by the task but determined by the solver’s 
experiences and understandings: in his solving habits for similar or different tasks, in 
his successes in mathematics with specific approaches, in his understanding of the 
tasks, etc. In this perspective, the solver does not choose from a group of 



  
predetermined strategies to solve the task, but engages with the problem in a specific 
way and develops a strategy tailored to the task he poses. 
Thus, students transform the mathematical tasks for themselves, making them their 
own, which is often different from the designer’s intentions (René de Cotret, 1999); 
Heirdsfield and Cooper (2004) and Rezat (2011) have indeed shown the occasional 
futility in mental mathematics of varying the type of problem or its didactical 
variables to encourage students to use specific strategies. When solving tasks, 
students generate a strategy tailored to the problem (they) posed, as acts of posing 
and solving are not predetermined but generated in interaction with the task: 
As a result of this interaction between noticing and knowledge each solution 
‘method’ is in a sense unique to that case, and is invented in the context of the 
particular calculation – although clearly influenced by experience. It is not learned as 
a general approach and then applied to particular cases. […] The ‘strategy’ (in the 
holistic sense of the entire solution path) is not decided, it emerges. (Threlfall, 2002, 
p. 42) 
Students are then seen to generate their strategies in order to solve their tasks. These 
are adapted responses, locally tailored to the tasks, emerging in interaction with them.  

THE STUDY – DEFINING MENTAL MATHEMATICS 
Because most work on mental mathematics is on numbers (often referred to as mental 
arithmetic or mental calculations) and defined accordingly, no formal comprehensive 
definition of mental mathematics appears in the literature. Based on the work on 
mental calculations, one tentative definition is: Mental mathematics is the solving of 
mathematical tasks without paper and pencil or other computational/material aids. 
This definition helps understanding the “constraints” to which the students are 
subjected to, the major issue being that students do not have access to any material 
aid, be it paper-and-pencil or other, to depend on for solving the problems offered to 
them. This study focuses on (any of) the strategies produced in this context. 

METHODOLOGY, DATA COLLECTION AND ANALYSIS 
One intention of the overarching research programme is to study the nature of the 
mathematical activity students engage in through working on mental mathematics. 
This is probed through (multiple) case studies, taking place in educative contexts 
designed for the study (classroom settings/activities). The reported study is one of 
those case studies, in a university mathematics education course. This site was aimed 
for because these students are not novice solvers in algebra, enabling a focus on their 
solving of algebra tasks (and less on their difficulties with algebra itself).  
Classroom activities were designed to offer algebraic equations for students to solve 
mentally. A variety of algebraic equations of the form Ax+B=C, Ax+B=Cx+D, 
Ax/B=C/D, Ax2+Bx+C=0 and their variants were presented. The classroom 
organization took the following structure: (1) an equation is offered orally or in 



  
writing on a transparency to the group; (2) students solve the equation mentally 
(without paper-and-pencil or material aids to solve or leave traces); (3) at the signal 
they write their answer on a piece of paper; (4) answers and strategies are orally 
shared, noted on the transparency. The data collected comes from the strategies orally 
explained (and noted on transparencies), as well as notes taken after the session. 
The data was first looked at, analyzed, in relation to the nature of the strategies 
generated by students for solving the tasks. Because this analysis is dependent on the 
type of mathematical objects worked with through the classroom activities, available 
theoretical concepts found in the literature to guide and enhance the data analysis 
were used. In algebra, unwinding/undo procedures (Nathan & Koedinger, 2000) or 
transformation of equations (Arcavi, 1994), to name but two, are examples of 
relevant dimensions used for the data analysis. This analysis rapidly led to 
considerations of the meanings given to solving an algebraic equation, the focus of 
this paper (other analyses regarding the strategy dimensions are to appear in another 
paper). Following Douady (1994), the goal of this paper is not to report on all 
learning that took place for students, nor to discuss the long-term outcomes for 
students in other contexts, but mainly to understand the meaning and functionality of 
the tools used (i.e. strategies for mentally solving algebraic equations) and explore 
their potential. The focus in this paper is thus placed on the problem posing aspects, 
that is, the nature of the mathematical strategies engaged in and its repercussions on 
the meanings afforded to what solving an algebraic equation is (see Bednarz, 2001). 

FINDINGS – MEANINGS FOR ALGEBRAIC EQUATION SOLVING 
Through solving the various tasks offered to them, students gave, implicitly, different 
meanings to what solving an algebraic equation represents. Those meanings are 
mathematically rich and contribute to deepen understandings of what solving an 
algebraic equation is. I outline below these various meanings. 
Meaning 1: finding the value(s) that satisfy, make true, the equality 
Underneath this meaning is the notion of a conditional equality, where it is not only 
the idea of finding the answers/values that make the equation true, but also the fact 
that the equality can be true or untrue. 
When students were given 5x+6+4x+3=–1+9x to solve, some rapidly asserted that 
there was no solution, because one can rapidly see 9x on both sides of the equation as 
well as the fact that the remaining numbers on each sides do not equate. It thus leads 
to the conclusion that there was no number that could satisfy the given equation, 
since no x, whatever it could be, could succeed in making different numbers equals. 
This strategy is related to what is often termed “global reading” of the equation 
(Bednarz & Janvier, 1992), that requires consideration of the equation as a whole 
prior to entering in algebraic manipulations, or what Arcavi (1994) calls a priori 
inspection of symbols, which is a sensitivity to analyze algebraic expressions before 
making a decision about their solution. (Arcavi gives the example of 



  
(2x+3)/(4x+6)=2, which has no solution because whatever the value of x, the 
numerator is worth half the denominator, making futile undergoing additional steps.) 
Another strategy students engaged in was one of “solving followed by validation”. 
When having to solve x2–4=5 one student rapidly transformed it into x2=9, obtaining 
3 as an answer. However, because he is in a mental mathematics context and is aware 
that his answers in this context are often rapidly enunciated and can lack precision, he 
decides to verify his answer. By mentally verifying if (3)2=9, he realizes that (–3)2 
also gives 9 and then readjusts his solution. This manner of solving the equation gets 
close to the idea not only of finding one value that makes the equation true, but also 
of finding all values that make it true. 
Meaning 2: deconstructing the operations applied to an unknown number 
This meaning requires reading the equation as a series of operations applied to a 
number (here x) and attempting to undo these operations to find that number. 
When having to solve equations like x2–4=5, students would say: “My number was 
squared and then 4 was taken away, thus I need to add 4 and take the square root”. 
Or, for 4x+2=10, “What is my number which after having multiplied by 4 and added 
2 to it gives me 10?” These are similar to inverse methods of solving found in Filloy 
and Rojano (1989) and Nathan and Koedinger’s (2000) “unwinding”, where 
operations are arithmetically “undone” to arrive at a value for x. As Filloy and Rojano 
explain, when using this method “it is not necessary to operate on or with the 
unknown” (p. 20), as it becomes a series of arithmetical operations performed on 
numbers. In this particular case, solving the algebraic equation is focused on finding a 
way to arrive at isolating x, in an arithmetic context. 
Meaning 3: operating identically on both sides to find x 
This meaning focuses on the idea that is often called “the balance” principle, where 
one operates identically on both sides of the equation to maintain the equality and 
obtain “x=something”. For example, when solving 2x+3=5, students would subtract 3 
on each side and then divide by 2. 
Meaning 4: finding points of intersection of a system of equations 
This is about seeing each sides of the equality as representing two functions, and thus 
attempting to solve them as a system of equations to find intersecting points, if any.  
For example, when solving x2–4=5, some students attempted to depict the equation as 
the comparison of two equations in a system of equations (y=x2–4 and y=5) and 
finding the intersecting point of those two equations in the graph. To do so, one 
student represented the line y=5 in the graph and then also positioned y=x2–4. The 
latter was referred to the quadratic function y=x2, which crosses y=5 at
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x = 5 . In the 
case of y=x2–4, the function is translated of 4 downwards in the graph, and then the 5 
of the line y=5 becomes a 9 in terms of distances. Hence, how does one obtain an 
image of 9 with the function y=x2? With an x=±3, where the function y=x2–4 cuts the 
line y=5. The following graph offers an illustration of what the student did, mentally. 



  

 
Solving an algebraic equation in this case is not about finding the values that make 
the equation true, but about finding the x that satisfies both equations for the same y, 
about finding the x coordinate that, for the same y, is part of each function 
Meaning 5: finding the values that nullifies the equation 
This meaning focuses on the equal sign as giving an answer (see e.g. Davis, 1975), 
but where operations are conducted so that all the “information” ends up being on 
one side of the equation to obtain 0 on the other side. The intention then becomes to 
find the value of x that nullifies that equation, that is, that makes it equal to 0. 
One example of a strategy engaged in was again about seeing the equation in a 
function view as in meaning 4, but here for finding the values of x that give a null y-
value, or what is commonly called finding the zeros of the function where the 
function intersects the x-axis at y=0. For x2–4=5, transformed in x2–9=0, the student 
aimed mentally at solving (x+3)(x–3)=0, leading to ±3. The quest was mainly finding 
the values that nullify the function y=x2–9, which gave point(s) for which the image 
of the function was zero. Another way of doing it, less in a function-orientation, is to 
use “binomial expansion” (what is called in French identités remarquables) for 
seeing that for the product to be null it requires that one of the two factors be null. 
This said, one needs to use neither a function nor binomial expansion to find what 
nullifies the equation. For example, if x+4=3 is transformed in x+1=0, one finds that 
–1 is what makes the left side of the equation equal to 0. 
Meaning 6: finding the missing value in a proportion  
This meaning was engaged with for equation written in fractional form (e.g. Ax/B=C 
or Ax/B=C/D). In these cases, the equation was conceived as a proportion, where the 
ratio between numerators and denominators was seen as the same or consistent. In 
this case, the equality is not seen as conditional but is taken for granted, to be true, 
leading at conserving the ratio between numerator and denominator in the proportion. 
For example, for 
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x

=
3
5
, reversed to
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x
6

=
5
3
, students solved by saying “If my number is 6 

times bigger than x/6, then it is 6 times bigger than 5/3”. Another way offered was to 
analyze the ratio between each numerators and apply it to denominators which had, in 



  
order to maintain the equality, to be of the same ratio: “If 6 is the double of 3, then x 
is the double of 5 which is worth 10”.  
Meaning 7: finding equivalent equations 
This meaning for solving the equation is oriented toward obtaining other equivalent 
equations to the first one offered, in order to advance toward an equation of the form 
“x=something”. This is related to Arcavi’s (1994) notion of knowing that through 
transforming an algebraic expression to an equivalent one, it becomes possible to 
“read” information that was not visible in the original expression. Through these 
transformations, the intention is not directly to isolate x, but to find other equations, 
easier ones to read or make sense of, in order to find the value of x. 
An example of such was done when solving 
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1
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, where some students doubled the 

equation, obtaining 
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4
5
x =1, which was simpler to read and then multiplied by 5/4 to 

arrive at x=5/4. This is an avenue also reminiscent of arithmetical divisions, where 
equivalences are established: e.g. 5.08÷2.54 is equivalent to 508÷254, because 254 
divides into 508 the same number of times as 2.54 into 5.08. 
Similarities and differences in meanings attributed 
Albeit treated separately, these varied meanings are not all different and some share 
attributes. Therefore, in addition to the variety of meanings, significant links can be 
traced between those, links that can deepen understandings about algebraic equation 
solving. For example, meanings 2 and 3 share an explicit orientation toward isolating 
x, where others do not have this salient preoccupation and focus on other aspects 
(satisfying the equality, finding points of intersection, etc.). Meanings 4 and 5 share a 
function orientation in their way of treating the equation, emphasizing each part of 
the equation as representing an image (or simply the value of the function).  
Many meanings also focus implicitly on conditional orientations, be it concerning the 
satisfaction of the equality or simply the possibility of finding a value for x. For 
example, in meaning 2 and 3, it is possible that no value of x is found and the same 
can be said for meaning 4, where it is possible that there be no point of intersection of 
the two equations or for meaning 5, where possibly no value of x could nullify the left 
side of the equation (e.g. x2 + 2 = 0 ). Without being explicit about it, these 
orientations represent a quest for finding a possible value, a quest that can be 
unsuccessful. This contrasts heavily with meaning 6, because treating the equation as 
a ratio assumes or implies that a value of x exists. Meanings 1 and 6 however do 
share something in common, which is related to an examination of relations between 
the algebraic unknown and the numbers in order to deduce the value of the algebraic 
unknown. Both do not opt for a sequence of steps to undertake, but mainly for 
working with the equation as a whole (in global reading for meaning 1, in ratios for 
meaning 6). Meanings 3 and 7 share the fact that operations are conducted on the 
equation as a whole, be it through affecting both sides in the same way to keep the 
“balance” intact or to obtain new equivalent equations. 



  
Finally, meanings 1, 2, 5 and 6 share the fact that they explicitly look for a number, 
where the algebraic unknown is conceived as an unknown number that needs to be 
found; a significant issue to understand when solving algebraic equations (Bednarz & 
Janvier, 1992; Davis, 1975). Hence, be it through looking at which number could 
satisfy the equation (meaning 1), which number could nullify a part of it (meaning 5), 
which number satisfies the proportion (meaning 6) or which is the number for which 
operations were conducted (meaning 2), all of them focus on x as being a number. 

DISCUSSION OF FINDINGS 
On the emergence of mental mathematics strategies 
The variety of meanings brought forth through students’ solving illustrates well how 
the various “posing” of the problems led to various strategies for solving and thus to 
various meanings attributed to algebraic equation solving. Each equation provoked 
numerous strategies for solving it, leading to numerous meanings attributed to 
algebraic equation solving. Thus, the same equation made emerge a variety of 
posings, of strategies, of meanings. This supports the view that strategies for solving 
emerge in the interaction of solver and task, where the solver plays an important role 
as he poses the tasks, and where the nature of the task plays a role as well, with a 
strategy tailored to it (see e.g. the impact of fractional or second degree forms on the 
nature of the strategies). Strategies emerge contingently where, as Davis (1995) 
explains, they are inseparable from the solver and the task, emerging from their 
interaction. Thus, building on Simmt’s (2000) work, the tasks given were not tasks 
but mainly prompts for solvers to create tasks with: prompts were offered to students, 
not tasks. Tasks became tasks when students engaged with them. Students made the 
equations ones about system of equations, about functions, about ratio, etc., allowing 
a variety of meanings for algebraic equation solving to emerge along the way. 
On the potential of mental mathematics for algebra 
This variety of meanings, emerging with/in students’ posing, has enormous potential 
for algebra teaching and learning. These meanings are significant, because they offer 
different entry paths into the tasks of solving algebraic equations and do not restrict a 
single view of how this can be done. Numerous authors have outlined difficulties 
experienced by solvers (from school to university) in solving algebraic equations (see 
Bednarz, 2001; Filloy & Rojano, 1989; Nathan & Koedinger, 2000). The emergence 
of this variety of meanings offers significant reinvestment opportunities for pushing 
further the understanding of algebraic equation solving. This is related to Butlen and 
Peizard’s (1992) assertion that the practice of mental calculations can enable students 
to develop new ways of doing mathematics and solving arithmetic problems that the 
traditional paper-and-pencil context rarely affords because it is focused on techniques 
and algorithms that are in themselves efficient and do not create the need for stepping 
outside of them. This seems also to be the case here for mental algebraic solving. 
Issues of conditional equations, of deconstructing an equation regarding operations 
done on a number, of maintaining the balance, of finding equivalent equations, of 



  
seeing an equation as a system of equations, and so forth, offered varied ways of 
conceiving an equation and of solving it. It opened various paths of understanding.  
Without making paper-and-pencil a straw-men for criticism, the mental mathematics 
context can be seen to have provoked some strategies and meanings different than 
ones used in the usual written context for solving equations in algebra. An example is 
the transforming of equations into equivalent ones (e.g.
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x =1). This 

reasoning is at the basis of solving equations in writing. But, it was here quite 
different than the usual transformations applied to equations, since the equation was 
not transformed in order to isolate x, but mainly to obtain other equations that were 
easier to read. In fact, even if many strategies were reminiscent of paper-and-pencil 
work, the major difference is that there was no paper-and-pencil work, leading to a 
dialogue taking place between the student and the task, while solving. Because 
students could not leave written traces or transform the equations in writing, and thus 
could not interact with what was obtained after each written step through 
manipulating the equation, the monitoring of the solution was done in real-time, 
through personal dialogue, through a story told in which the solver engaged through 
telling the story, to keep track of the operations being conducted and their adequacy. 
In short, students had to invent (to pose) their stories about the problem, to interpret 
the equation in their own terms, in order to find a way to solve it. These “steps”, 
oriented by the task at hand, oriented in return the next steps. Solving was done 
through the action of solving, and not through applying a known procedure, making it 
quite a different solving experience. 
This mental algebra context seems to have offered a different context for solving, one 
that led to the development of various ways of solving and making sense of algebraic 
equations. It opened spaces of exploration that can be taken advantage of in teaching, 
in order for example to unearth the various meanings given to solving algebraic 
equations or similarities and differences between those. The variety of meanings that 
emerged also shows how the mental mathematics context offered occasions for 
thinking differently about algebraic equation solving. The opening of this varied 
solving space, not restricted to a one-size-fits-all way of solving, can have significant 
impact on students’ understandings of and attitudes toward algebraic equation 
solving. Obviously, these meanings emerged in this specific context, with these 
students, and there is no guarantee that this would be so in another context. But this is 
not the point. The point is to generate deeper understandings of the sort of learning 
opportunities that solving algebraic equations mentally can offer, and to know more 
about the nature of the strategies engaged with. Thus, in the context of the study, with 
students studying to become future teachers, these openings to varied ways of solving 
and of conceiving algebraic equations cannot be underestimated. More research is 
still needed, but already this emerging variety of meanings shows important promise 
of mental mathematics for enriching algebraic experiences. 
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