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Algebraic symbols allow a reasoning, in which one can detach from the referents of 

these symbols. This is the starting point for formalized mathematics. Reasoning 

algebraically on the basis of formalized mathematical objects is a central starting 

point for school mathematics in the middle- and higher-grades. This paper explores 

how students reason algebraically with the help of a formal symbolic representation 

when working on an arithmetic-structural non-routine problem. It is argued that this 

form of algebraic reasoning has two intermingling aspects, namely formal reasoning 

and contextual reasoning. This case study suggests that students employ modes of 

contextual reasoning in order to direct their manipulations of algebraically 

represented objects.  
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FORMALIZATION IN MATHEMATICS 

In the 19
th

 century, algebraic symbols were the central instrument to establish formal 

mathematics without “ambiguity of meanings [and without] concealed assumptions” 

(Boyer & Merzbach, 2010, p. 598). Today formalism still plays a strong role in 

mathematics; it is deeply embedded into the culture of mathematics. Symbolic 

algebraic language is one of the main tools for formalization. Algebraic symbols 

“enable us to detach from, and even “forget”, their referents in order to produce 

results efficiently” (Arcavi, 1994, p. 26). Formalization thus lies at the heart of 

algebraic thinking - it describes those mental acts of individuals, through which a 

mathematical problem is symbolized in accordance to the rules of the mathematical 

culture. Formal algebraic thinking is the process by which one attends to this 

problem with the help of algebraic symbolic language.  

Formal algebraic thinking, however, is not equivalent to rule-based manipulating of 

symbols. Rule-based manipulating may be one aspect of formal algebraic thinking, 

but there are other aspects as well. I will elaborate on this with the following 

example, taken from Arcavi (1994, p. 28). Arcavi suggests, that equivalent formal 

symbolic expressions can be a “possible source of new meanings” (Arcavi 1994, S. 

28). He then gives an example for this: “Take an odd number, square it and then 

substract 1. What can be said about the resulting numbers?” An odd number can be 

represented by 2n+1, so that the above sentence can be translated into (2n+1)
2
-1, 

which equals 4n(n+1). According to Arcavi, this last expression shows, how 

equivalent expressions can generate new meaning: It uncovers a new property of the 

resulting numbers, which could not be seen in the original expression: the resulting 

number must be divisible by 8, because either n or n+1 is a multiple of 2.  



  

Arcavi, however, does not address the inherent difficulties, which students may face 

when they try to see a new meaning in an equivalent expression (such as 4n(n+1)). 

First, as Boero points out, a student’s transformational activity is guided by 

processes of anticipation, that is, the student “needs to foresee some aspects of the 

final shape of the object to be transformed related to the goal to be reached […]” 

(Boero 2002, p. 100). Second, a student may need a certain mathematical knowledge 

in order to anticipate a final shape of an algebraic expression of an object. In 

Arcavi’s example, a student needs to realize that one can factorize a number and then 

find out about this number by looking into its factors. Thus, generating new meaning 

through looking into equivalent expressions faces an inherent conflict. On the one 

hand students have to be able to foresee the final shape of a symbolically represented 

object and, on the other hand, students may generate new meaning only after 

manipulating this symbolically represented object, because only then there are 

equivalent expressions which denote the same object. But if meaning is only 

generated afterwards, students’ have no means to foresee a final shape of algebraic 

objects before or while manipulating these objects.  

This paper tries to address and explore this issue of generating meaning during the 

manipulation of algebraic expressions. This way, it tries to extend the work of Arcavi 

on processes of meaning making with algebraic symbols, and, by doing so, tries to 

explore how students deal with objects in their formal algebraic thinking. For that, it 

discusses two semi-structured interviews, in which students try to solve a non-

routine problem with the help of algebraic symbols.  

FORMAL ALGEBRAIC REASONING AND CONTEXTUAL REASONING 

According to Caspi and Sfard, formalization is a discourse in mathematics with 

specific meta-rules, which regulate it. These rules are incorporated into the algebraic 

symbolism of formal mathematics (Caspi & Sfard, 2012). The content of an algebraic 

expression is a generalization of an arithmetic narrative (Sfard, 2008, p. 120). 

a+b=b+a, for example, represents a general feature of real numbers, and is thus a 

generalization of an arithmetic structure. Bergsten suggests that formal mathematics 

allows to address (and solve) not only one problem, but “types of problems” 

(Bergsten, 2008, p. 1). In order to solve types of problems with symbolic, “formal” 

expressions, one needs an awareness of both its structural and its operational aspects 

(Bergsten, 2008).  Thus, the strength of formal mathematics lies not only being able 

to address arithmetic generalizations, but in being able to address a pattern or 

structure, by which one can solve types of problems. For example, a function like 

f(x)=ax+b represents a pattern between two sets of numbers, denoted by x and f(x). 

At the same time, f(x) can be regarded as an object itself. With the help of this object, 

certain types of problems can be solved (those problems in which there is a linear 

relationship between x and f(x)).     



  

Solving a non-routine problem with the help of algebra requires a student to 

represent this problem with algebraic symbols. For Arzarello et al., this process of 

symbolizing a situation is a form of condensing meaning, so that students can “grasp 

the global situation as a whole” (Arzarello et al., 2002, p. 79). Arzarello et al. show 

that symbolizing is a “game of interpretation”, in which –in a continuous process- 

more sophisticated conceptual frames are activated, until the student’s “stream of 

thought […] condenses its temporal, spatial and logical features into an act of 

thought, […]” (Arzarello et al., 2002, p. 79). The nature of this condensed meaning is 

relational. A relational meaning is a meaning which is embedded into the relations 

between the signs and terms of an algebraic expression (Radford, 2009). Relational 

meaning is opposed to meaning, which is related to the context of the original 

problem, that is, the original representation of a problem as it is given to a student. 

The challenge students face when they try to generate relational meaning “[…] is to 

transform the iconic meaning of formulas into something that no longer designates 

concrete objects” (Radford, 2009, p. 14). Hence, students’ resources for formal 

mathematics and for formal algebraic reasoning are the relations between the 

elements of a given symbolic expression.  

Based on these assumptions about the nature of formalization, I want to define 

formal algebraic thinking. In this paper, algebraic thinking is regarded as analytical 

reasoning about patterns and structures, where the term “analytic” means to 

systematically address something through its constituent parts. In line with this, 

formal algebraic thinking is defined as the reflection upon patterns and structures by 

seeing/establishing relations between those elements of the symbolic expression, 

which represent these patterns and structures.  

This definition of formal algebraic thinking may help to give insight into how 

students generate meaning for equivalent expressions. In the example taken from 

Arcavi, the expression 4n(n+1) can be read by establishing relations between it parts. 

In this expression, 4n can be read as a factor. This would suggest divisibility by 4 or 

8, depending on n. The expression n+1 has to be read in the same way and has 

additionally to be related to n in 4n. This (possible) solution illustrates how the 

structural elements of the symbolic expression 4n(n+1) need to have a meaning for 

the student, which is related to the original problem and its objects, representations 

and relations. 

The definition suggests an answer to the above mentioned conflict of meaning 

making in Algebra: Based on this notion, meaning making processes in formal 

algebraic thinking may be moderated by patterns and structures of algebraic 

expressions. It thus leads to the following question:  how do structures and patterns 

moderate students meaning making processes when they try to proceed from 

contextual to relational meanings? 



  

METHOD 

This exploratory study is based on semi-structured interviews with four groups of 

two students each. Two groups consisted of 9
th

 grade German high-school students, 

the other two of 11
th

 grade German high school students. The transcripts presented in 

this paper are from the two groups of 11
th

 graders, as the ninth graders showed no 

signs of formal algebraic reasoning. For the question of this paper, this way of 

choosing probands is acceptable (However, it is quite noteworthy, that there are no 

signs of formal algebraic reasoning in the interviews with the 9
th

 graders). The 

transcripts are qualitatively analyzed. The author conducted the interviews. However, 

he was not the teacher in the aforementioned classes. The interviews were not related 

to the subject-matter of the current lectures in school.  

All of the participating students were introduced to algebra in the 7
th

 grade and had 

the opportunity to become fluent in algebraic symbolic language at least through the 

8
th

 grade. It can also be assumed, that these students have had experiences with 

certain kinds of formal algebraic reasoning, for example when dealing with two 

functions in modeling problems or in physics classes, where a formula can be a 

starting point to deal with certain kind of phenomena like gravity or force. The 

students were chosen in consultation with the mathematics teacher according to their 

positive attitude to mathematics and their willingness to participate.   

The mathematical task 

The students were given a series of similar algebraic non-routine problems called 

number-triangle (“Zahlendreieck”). All of these number-triangles share the same 

structure (compare fig. 1); the number in an outer field is the sum of the numbers in 

the two adjacent inner fields. The numbers in the outer fields add up to the outer 

sum, which is always given in the rectangle at the bottom right of each number 

triangle. The number-triangles require the students to think algebraically, as students 

have to reflect analytically on the triangles’ structure. The number-triangles can be 

solved by a guess-and-check strategy. However, often the students adopt a strategy in 

which they focus on the structure of the triangle. For example, students will choose a 

number for a certain field and then search for the numbers of the adjacent fields by 

applying the rules of the triangle. By solving the first three number triangles in the 

beginning of the interview, the students get a sense for the structures of number 

triangles.   

Of special interest are the fourth and fifth number triangles (fig. 1). These triangles 

are designed to trigger formal algebraic reasoning. Other than the previous triangles, 

the fourth triangle has no solution: the rules of the triangles result in an outer sum, 

which is always the fixed result of two times the number in the upper inner field 

added to two times the number in the bottom outer field (2x+2y). In case of the 

fourth triangle the outer sum would be 2∙7+2∙9=32 and not 30. Therefore, the 

students cannot find a combination of numbers which would solve the fourth triangle 



  

in accordance with its rules. When the students get an idea that the triangle cannot be 

solved by a guess and check strategy, it is expected that students would take a 

structural perspective on the number triangle. Either on their own initiative or by a 

silent impulse from the interviewer (giving an x in the left field of the inner triangle), 

students should begin to reason algebraically in a formal way.  

 

 

 

 

The following fifth triangle has a given outer sum but is apart from that empty. In 

this triangle, students may either re-use their symbolic representation of the previous 

fourth number triangle or adopt a different strategy.  

The students have to represent the rules of the number triangles through algebraic 

symbols, and then act upon this algebraic representation. The students’ formal 

algebraic reasoning is supported by the mental image of the structure of the number 

triangles, which they gained from their previous arithmetic reasoning on the structure 

of the first three triangles. It is assumed, that this makes it easier for students to relate 

their symbolic manipulations to the problem at hand. At the same time, students only 

need to have fundamental arithmetical knowledge to work on the problem (compared 

to Arcavi’s example, where knowledge about factorization is needed). This should 

eliminate the problem that students cannot generate a new meaning for an algebraic 

expression when they lack the necessary knowledge to do so.  

As the students in the study are all used to algebraic symbols, it is expected that they 

can represent the triangle with the help of algebraic symbols. Additionally, they can 

use this formal representation to reason formally about number triangles, that is, 

students should see patterns and relations in the algebraic representation. By looking 

into the patterns and relations of the algebraic representation, students can either 

identify the problem in the fourth number triangle or, respectively, can find the 

numbers in the fifth triangle. While the number triangles support students’ formal 

Figure 1: Number-triangles 4 and 5 



  

reasoning, they may also act as a possible scaffold for generating meaning while 

manipulating algebraic expressions. In summary, the five number triangles, which 

are given to the students during the interview, should allow students to make 

references to the original features of the number triangles during formal reasoning. 

Thus, the number triangles provide a scaffold for processes of meaning making 

during manipulating formal algebraic expressions  

FORMAL ALGEBRAIC REASONING AND CONTEXTUAL REFERENCES  

In the following section I will discuss transcripts from two groups of 11th graders. I 

will present how each group of 11
th

 graders tries to solve the fourth and fifth number 

triangle on the basis of its formal algebraic representation.  

Frank and Peters’ formal algebraic thinking  

Peter and Frank start to solve the problem of the fourth number triangle by trying 

different number combinations. They systematically check combinations of natural 

numbers for the lower inner fields with a sum of 9, e.g. 1 and 8, 2 and 7 etc. They 

hypothesize that the outer sum is always 32. Later, Frank can prove this hypothesis 

by finding a structure in the triangle:  

118 Frank: […] Because here we have one 7 (writes 7 into the upper left field), 
[…] here one 7 (writes 7 into the upper right field). This is two times 
7, basically (writes 2∙7 above the number triangle). And here we have 
one times 9 (writes 9 into the lower outer field) […] and here (points 
at the left inner field) we have one part, I mean, one x of 9, I mean, 
times x, I don’t know how to put it, say x from 9, and here (points at 
the lower tip of the right outer field) […]  

120 Frank: here it is the rest [of 9].  

121 Peter:  x1 and x2 is 9 it is here.  

The structure of the triangle helps Peter and Frank to observe, that the outer sum of 

number triangle can be described arithmetically with 2∙7+2∙9. Frank and Peter use 

variables to describe the composition of the lower outer field. This transcript 

illustrates how Frank and Peter take a first step towards an algebraic representation 

of the given number triangle. The use of the variable x (or, x1 and x2) is embedded 

into the contextual features of the problem, that is, the original representation of the 

number triangle. This can be seen in the way Frank associates his variable with the 

according field of the number triangle in line 118 (“x from 9” and accompanying 

pointing gestures). This suggests that the formalization of the number triangle for 

Peter and Frank starts within the contextual features of the problem.  

When working on the next fifth number triangle, it becomes evident, how Frank and 

Peter proceed to an algebraic representation of number triangles. Frank and Peter 

adopt their previous arithmetic representation, but modify it in a way that it fits to the 

problem of the fifth triangle. The following transcript shows how Frank uses formal 

reasoning for solving the triangle:  



  

165 Frank:  Yes. We can say we have two times x (writes this next to the triangle) 
ah… plus two times y (adds “+2y”) equals 14 (writes “=14”) and for 
that we can put in any number, y we now can… let’s say equals 2, then 
we would have then 4, then we have 10 left. […] 

167  Frank Half of that is 5 (writes 5 into the bottom outer field). For example. 

  […][interviewer asks them to find the remaining numbers in the 
triangle] 

174  Frank:  It is … it doesn`t matter how to fill them (writes 2 into the upper inner 
field). Here we can now say 3 and 2 in there (refers to the two lower 
inner fields) […] or 1 and 4 … ah… the values would remain the 
same.    

Frank generalizes the expression 2∙7+2∙9, so that it fits to the new problem. For that, 

he uses two variables. These variables denote different objects in comparison to the 

variable in line 118. This way, Frank develops an equation, which describes the fifth 

number triangle in a formalized way. The general character of this new formula can 

clearly be seen, as 2x+2y=14 is a generalization of 2∙7+2∙9. Furthermore, with the 

generalization comes the notion of the indetermined status of x and y, as “for that we 

can put in any number” (line 165).  

In line 165 there is evidence that for Frank the algebraic expression 2x+2y=14 is a 

representation of the number triangle, which allows for formal algebraic reasoning. 

There are no contextual references being made. Instead, the problem of the fifth 

number triangle is modified into a problem of finding numbers which solve the 

equation 2x+2y=14. The problem of the number triangle is examined on the basis of 

the relations in the according algebraic expression. 

However, there is also evidence that Frank’s formal algebraic reasoning relates to 

contextual features of the problem. In line 167, Frank orients his problem solution 

towards features of the fourth number triangle. He first fills in a number for the lower 

outer field. In the previous number triangles, this lower outer field always contained 

a given number. The same can be seen in line 174, where at first Frank fills in a 

number into the upper inner field, which was also always given in the previous 

number triangles. On the basis of these two determined fields Frank now starts to 

determine the remaining fields of the number triangle with the help of the algebraic 

representation.  

In the interview with Frank and Peter there is evidence which suggests that formal 

algebraic reasoning may incorporate contextual features. These contextual features 

remain implicit in the formal algebraic representation. However, as the lines 167 and 

174 suggest, contextual features nevertheless influence (or, to some degree, guide) 

formal algebraic thinking. Hence, it may be plausible, that acting on a problem with 

its formal algebraic representations (“manipulating”) could to some extent be guided 

by contextual features of a problem.   

 



  

 

Stephanie and Laura’s formal algebraic thinking 

Compared to Frank and Peter, Stephanie and Laura take a different approach to 

representing the fourth and fifth number triangles. Stephanie and Laura base their 

formal representation on the notion that the upper inner field and the lower outer 

field have a ratio of 9 to 6 (which is in fact an overgeneralization, as it is not a 

feature of all number triangles). On the basis of this, they start to represent the fourth 

triangle with a variable x:  

151 Stephanie  Here x (writes x into the upper inner field), then one has, it is 3/4x 
(writes 3/4x into both remaining inner fields), and down here it would 
be then 3/2x (writes 3/2 into the bottom outer field).  […]  

153 Stephanie  And then you have to add these two (points at the two inner fields on 
the right with x and 3/4x) 

This transcript illustrates how the idea of the ratio 9 over 6 is used to find an 

algebraic representation. The upper inner and lower outer fields are represented with 

an x and 3/2x respectively. This suggests that the idea of 9 over 6, which originated 

from the contextual features of the previous number triangles, is the basis for the 

algebraic representation. In this representation, each algebraic term (3/4x; x; 3/2x) is 

associated with its according field in the triangle. Hence, the formal algebraic 

representation is not completely detached from the contextual features of the 

problem, but remains connected to it.  

After a short episode of trying different numbers in the fourth triangle, Stephanie and 

Laura use the above presented formal algebraic representation to work on the fifth 

number triangle. The following dialogue shows their first attempt towards a solution: 

226 Stephanie:  We have to get 14 (points at the 14 in the field next to the number 
triangle), the whole over there… 

227  Laura:  Ah, yes, 14 divided by 5 is, well… 

228  Stephanie:  2.8.  

229  Laura:  yes […] 

231  Stephanie:  And then, there (points at the bottom outer field) has to be 4.2, because 
it is one and a half. […]” 

Stephanie refers to the algebraic representation of the outer sum, which is 5x (which 

originates from the sum (1+3/4)+(1+3/4)+1). By dividing 14 by 5 Laura can then 

determine the value of x. In line 231, Stephanie uses the algebraic representation of 

the number in the lower outer field, which is “one and a half” x.  

This transcript illustrates, that Stephanie and Laura are using their previous algebraic 

representation to work on the fifth number triangle. It becomes evident, that they are 

focusing on the factors 3/4, 3/2 and 1 in order to solve the fifth triangle. This can be 

seen in the lines 151 and 153. These factors are a somewhat unorthodox way to deal 

with the formal algebraic representation: They allow the students to focus on the 



  

relations of the number triangles. However, at the same time, this representation is 

contextual, as each factor clearly remains connected to its according field in the 

triangle. Thus, Stephanie and Laura’s algebraic reasoning can be regarded as 

“formal”, as they focus on structures in the triangle with the help of its according 

algebraic representation. At the same time, the contextual connections of their 

algebraic representation are guiding their formal reasoning. In the case of Stephanie 

and Laura, each step in finding a solution for the fifth number triangle is both linked 

to a field in the number triangle and to the number triangle’s “formal” algebraic 

representation.    

SUMMARY AND DISCUSSION 

Formal algebraic reasoning and contextual reasoning are connected to the structure 

of the formal algebraic representation of a given problem. In the interviews there is 

evidence that meaning is generated on the basis of the relations in algebraic 

expressions. This process of meaning making is consistent with Radford’s findings. 

On the other hand, the interviews also show how, at the same time, manipulating 

formal expressions can be informed by contextual relations – structural elements of 

the original problem are incorporated into manipulating formal algebraic expressions 

and, this way, into formal algebraic reasoning. Furthermore, formal algebraic 

representations have (implicit) connections to the original problem. It has been 

shown, that features of the original problem contribute to the students’ formal 

algebraic reasoning - even though these features are not represented in the algebraic 

expression or in its relations. Thus, formal algebraic reasoning may be implicitly 

supported by contextual reasoning: students can foresee the final shape of an object 

by referring to contextual meaning during the process of manipulating this object. 

This suggests that meaning making processes in formal algebraic reasoning can 

remain linked to contextual meaning.    

Formal algebraic reasoning may be influenced by the original meaning of a problem 

(as students see it) and knowledge about features of this problem (e.g. the 

factorization of a number). Thus, while there is “condensed meaning” (as Arzarello 

suggests), at the same time there are processes, where this condensed meaning 

remains regulated by meaning derived from the original problem and its 

representation. Hence, the conflict of generating meaning during the manipulation of 

algebraic expressions may be resolved by acknowledging, that, in the process of 

manipulating, the anticipation of the final shape of an object is adjusted and 

regulated by contextual reasoning.    

Formal algebraic reasoning is a central part of mathematics in the higher grades. It is 

relevant for solving non-routine problems or for modeling real-world situations (in 

analytical geometry, in infinitesimal calculus) or even for handling complex concepts 

in physics or chemistry with the help of symbolic algebraic representations. This 

study may provide a plausible explanation for some problems students have in 



  

formal mathematics. In situations, in which students have difficulties to see 

contextual features of a problem (e.g. if they are not made explicit or are not directly 

visible), students may have problems to direct their formal algebraic reasoning, as 

they cannot foresee the final shape of an object. For example, addressing the 

divisibility of a number by factorizing it, like in the example taken from Arcavi, may 

not be a self-evident contextual relation for students, and - when this relation is not 

being made - may hinder the students to anticipate the final shape of an algebraic 

object, towards they could have aimed their manipulations of the initial object.    
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