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This paper presents how two student teachers struggle to find an explicit formula for 
the general member of a sequence mapped from a shape pattern which they have 
successfully generalised in terms of a recursive formula. The paper shows how the 
milieu for algebraic generalisation in the observed episode is constrained in two 
senses: first, by the design of the task; second, by the teacher educator’s intervention 
which presupposes prior knowledge that the student teachers do not have. It is 
discussed how manipulations on the geometrical configurations might enhance the 
milieu for algebraic generalisation of shape patterns and provide a link between 
recursive and explicit formulae. 
Keywords: Recursive and explicit formulae, shape pattern, growth of sequence, 
decomposition, milieu, adidactical situation. 

INTRODUCTION 
There is a two-fold purpose of tasks on algebraic generalisation of shape patterns: 
One is to provide a physical or iconic context for algebraic generalisation where the 
aim is to promote students’ algebraic thinking and justification. Here, algebra is 
approached through pattern generalisation. The other is to lead students to experience 
patterns as mathematical structures as an aim in itself. Here, algebra is a mediational 
means to represent invariant structures in the patterns. However, it is rather common 
that shape patterns are used only to produce a sequence of numbers which 
subsequently is generalised in terms of an algebraic formula without references to the 
elements of the pattern (Lannin, Barker & Townsend, 2006). Strategies of “guess-
and-check” that involve superficial pattern spotting are frequently used with the 
consequence that students do not detect the generality of the formulae they find 
(Lannin et al., 2006).  

THEORETICAL FRAMEWORK 
In Brousseau’s (1997) theory of didactical situations in mathematics, an adidactical 
situation is a situation in which the student takes a mathematical problem as his own 
and solves it on the basis of its internal logic without the teacher’s guidance and 
without trying to interpret the teacher’s intention with the problem. The devolution of 
an adidactical learning situation is the act by which the teacher encourages the 
student to accept the responsibility for an adidactical learning situation or for a 
problem, and the teacher accepts the consequences of the transfer of this 
responsibility (Brousseau, 1997). The student cannot engage in any adidactical 



  
situation; the teacher attempts to arrange an adidactical situation that the student can 
handle.  
In the devolution process, which is part of the broader (didactical) situation, the 
teacher is faced with a system that consists of the student and a milieu “that lacks any 
didactical intentions with regard to the student” (Brousseau, 1997, p. 40). The milieu 
is a subset of the students’ environment with only those features that are relevant with 
respect to the knowledge aimed at by the teacher in the didactical situation. The 
concept of milieu models the elements of the material or intellectual reality on which 
the students act and which may be an obstacle to their actions and reasoning (Laborde 
& Perrin-Glorian, 2005). That is, the milieu of a didactical situation is the part of the 
environment that can bring feedback to students’ actions to accomplish a task.  
An adidactical situation is part of the didactical situation that is the broader situation 
with the system of interaction of the students with the milieu arranged with the 
purpose of the students’ appropriation of the target knowledge without the teacher’s 
intervention (Brousseau, 1997). The teacher can act on the milieu by providing new 
information or new equipment, for example by asking a question or directing 
students’ attention to certain factors in the classroom situation. When the teacher acts 
on the milieu, she changes the knowledge needed to solve the problem (Perrin-
Glorian, Deblois & Robert, 2008). Whether the student can handle an adidactical 
situation depends upon two conditions: first, that the student has prior knowledge that 
enables him to engage with the situation; second, that the milieu created by the 
teacher provides the student with knowings that enable him to develop the knowledge 
aimed at (by the teacher).  

METHODOLOGY 
The reported research is derived from the author’s PhD project (a case study) 
reported in (Måsøval, 2011). In the rest of the paper, “students” is used to refer to the 
student teachers, and “teacher” is used to refer to the teacher educator. The research 
question addressed in the paper is: How do the mathematical task and the teacher’s 
intervention constrain students’ appropriation of algebraic generality in a shape 
pattern? The task with which the paper deals (Figure 1 on the next page) was the first 
of four tasks (during eight lessons) on algebraic generalisation of shape patterns. 
There had been a short whole-class introduction to figurate numbers (illustrated by 
triangular numbers) before the observed small-group lesson.  
The data is a video-recorded observation of two students’ collaborative engagement 
with Task 1 (with teacher intervention). The students are Alice and Ida, who were in 
their first academic year on a four-year undergraduate teacher education programme 
for primary and lower secondary school in Norway. The teacher is Erik, who was 
responsible for teaching algebra to the class of which Alice and Ida were members. 
The observed students worked on the same task as the rest of the class (ca. 60 
students). My role during data collection was to be a non-participant observer while 
video-recording the interaction between the students and the teacher. The video-



  
recorded episode has been transcribed and analysed through a process of open coding 
(using an adapted grounded theory approach, Strauss & Corbin, 1998) where 
concepts from the theory of didactical situations (Brousseau, 1997) have been used to 
answer the research question.  

ANALYSIS OF THE EPISODE 
A formula for the general member of a sequence – isolated from the regularity 
of the shape pattern from which it is arising  
Task 1 (Figure 1) has been designed by Erik for collaborative work in small groups. 
According to Erik, the aim of Task 1 was twofold: first, to express the regularity of 
the shape pattern in natural language; second, to transform the natural language 
expression into algebraic symbolism.  

Below you see the development of the first two shapes in a pattern. 

 
a)  Draw the third and fourth shapes in this pattern. You may use the squared paper. 
b)  Count the number of stars in each of the shapes you have now, and put the results into a 
        table. Explain how the number of stars increases from one shape to the next. Use this to 
        calculate how many stars there are in the fifth shape. 
c) What you have found in task b is called a recursive (or indirect) formula. Can you 
        express it in terms of mathematical symbols? 
d) Try to find a connection between the position of a shape and the number of  stars in that 
        shape. This is called an explicit formula. Can you express such a formula in terms of mathe- 
        matical symbols? 

Figure 1. Task 1 given to the class for work in small groups 

There are several possible ways to continue the pattern in Task 1 of which the first 
two geometrical configurations (elements) were given. In the following I concentrate 
on the alternative identified by Alice and Ida (Figure 2).  

 

Figure 2. Continuation of the shape pattern in Task 1 invented by Alice and Ida 

The students write the numbers mapped from the first four elements of the shape 
pattern down in a table where differences between successive members are written in 
the bottom row. Alice notices that “it is indeed the four-times table, and Ida says that 



  
“it must be sixteen and then twenty the next time”. They use this to extend their table 
which becomes like the one shown in Table 1.    

Table 1 

4     8   12    16    20                                

Shape                   1      2       3       4       5      6    
Number of stars   1      5     13     25     41     61   

+ + + + +

 

Then they reflect further on how the number of stars increases from one shape to the 
next (Task 1b):   

28 Alice:  You increase by the four-times table in a way. Each time [Pause 1-3 s] 
it increases by four and four each time. 

29 Ida: Yes, for each new shape it increases by four. 
30 Alice: Then it increases by [Pause 1-3 s] the previous [increment] plus four. 

Their observations of the growth, as manifested in turns 28-30, describe properties of 
a pattern with quadratic growth: The first differences follow a pattern of linear 
growth; that is, the second differences are constant (Kalman, 1997). Alice and Ida, 
however, do not use the terms “linear”, “quadratic”, “difference”, or “second 
difference”. After they have written the first eight and the 19th, 42nd and 99th 
members of the sequence as the sum of the previous member and the difference, they 
arrive at the following recursive formula: 1( 1)4 n nn s s−− + = .  

Alice and Ida have in the above used a numerical approach to generality. This is not 
surprising, given the design of the task; the focus is on counting components and 
putting the numbers into a table (Task 1a). Further, the students have decomposed 
particular numbers mapped from the shape pattern in terms of arithmetic relations, 
where the numbers are written as a sum of their predecessor and the difference. 
Algebraic thinking (Mason, 1996) is then used to establish the formula 

1( 1)4 n nn s s−− + = . This is based on the students’ observation (of the particular 
members) that the difference between successive members is equal to the product of 
the number four and the position of the least member.  
In the numerical approach employed, the geometrical configurations are important 
only as a context to produce a sequence of numbers that subsequently is generalised 
in terms of a formula in algebraic symbols. The shape pattern in the task is a real 
milieu (Brousseau, 1997) in the sense that it can be manipulated; the students draw 
the next elements and count their components. They do not, however, decompose the 
geometrical configurations to analyse the invariant structure of the pattern: There is 
no feedback in the didactical situation that makes a structural analysis of the elements 
necessary. Hence, Alice and Ida do not make references between the iconic context 
and the arithmetic relations they have written down. In this way, when they 
generalise the arithmetic relations by algebraic thinking, it is likely that the students 
do not experience the pattern as a mathematical structure to be an aim in itself, where 
algebra is a mediational means to represent the invariant structure in the pattern. This 



  
is not in agreement with the intention expressed by the teacher, which was to express 
the regularity of the shape pattern in natural language, and subsequently to transform 
the natural language expression into algebraic symbolism.  
An attempt to make a connection between a recursive formula and an explicit 
formula does not succeed 
When the students afterwards (without the teacher present) shall find an explicit 
formula for the n-th member of the same sequence, they use an analogue approach: In 
search for an explicit relationship, explained in Task 1d as “a connection between the 
position of a shape and the number of building blocks in that shape”, they calculate 
the differences between the members of the actual sequence and their respective 
positions. This method I interpret as the students’ erroneous application 
(“overgeneralisation”) of the features of a recursive approach in an explicit approach 
to the general member of the sequence. 
An explicit formula for the general member of a sequence mapped from a shape 
pattern can be defined as the numerical value of the n-th element expressed as a 
function of n. The method employed by the students is inappropriate because they 
establish an arithmetic relation (difference) between member and position, ( )f n n− , 
instead of a functional relationship between member and position. Based on their 
calculation of the differences, ( )f n n− , I infer that they have interpreted the word 
“connection” used in the task to mean “difference”. Alice and Ida’s construal is 
possibly influenced by their engagement (in the same session) with a recursive 
formula (Task 1c), where they had calculated the differences between successive 
numbers of the sequence at stake. In search for an explicit formula (Task 1d), they 
produce the diagram shown in Table 5, where the commentary column (where R 
refers to “row”) is made by me to explain how the numbers are derived.  

Table 5: Diagram produced by the students in search for an explicit formula 

            Commentary 

 1  2  3  4  5  6 R 1 n  

0  3  10  21  36  55  R 2 ( )f n n−  

 1  5  13  25  41  61 R 3 ( )f n  

  3  7  11  15  19  R 4 1(R 2) (R 2)i i+ −  

   +4  +4  +4  +4   R 5 1(R 4) (R 4)i i+ −  

 
The second row of Table 5 consists of differences between members of the sequence 
mapped from the shape pattern (third row) and their position (first row); the second 
row is symbolised in the commentary column by ( )f n n− . In constructing the 
numbers in the second row, the students have not focused on coordinating the 



  
referents (components and position) for the variables. If referents were added for 
numbers in the second row, the resulting number sentence would be: 5 
[components]−2 [position?]=3 [components]. This is problematic since the 
operation of difference is not referent transforming. Further, the fourth row of Table 5 
consists of first differences of ( )f n n− , and the fifth row consists of second 
differences of ( )f n n− . 

When teacher Erik, who has designed the task, enters the room (on his own 
initiative), the students ask him if they are on the right track with respect to an 
explicit formula. The teacher responds by asking them what the characteristic of the 
recursive formula is. The students answer by describing the general nature of a 
recursive formula, but the teacher says that he means the particular recursive formula 
in Task 1. The conversation continues like this: 

374 Teacher E: It is not so easy, you know, the explicit one [laughs]. There is 
something, there is something about the recursive [relationship] which 
makes it complicated. [Pause 1-3 s] How is it if you look at the 
increase from one shape to the next? 

375 Alice: Ehm [Pause 1-3 s] you take the previous one and multiply. No, you 
take the previous increase and add four to it. 

376 Teacher E: Yes, exactly, right. You take the previous increase and add four. 
When the teacher in turn 374 suggests that there is something that makes the sought 
explicit relationship complicated, I interpret that he attempts to explain the 
complexity by the type of growth of the sequence arising from the shape pattern. This 
is indicated in the same turn by the teacher’s attention to the (first) differences of the 
sequence when he asks the students to describe “the increase from one shape to the 
next”. He reinforces that the growth is non-constant by repeating Alice’s description 
of the increase (turn 376). I find it plausible that his claim about the complexity of the 
sought explicit relationship and his attention to the fact that the first differences are 
non-constant, are attempts to make the students work analytically and thereby 
potentially deduce properties of the syntax of the explicit formula searched for. This 
interpretation has been approved by teacher Erik. It is consistent with a later utterance 
(from the transcript), where it appears that the teacher understands the numbers in the 
fourth row to represent the first differences of the sequence mapped from the shape 
pattern:  

455 Teacher E:   It’s just that, that [Pause 1-3 s] life would have been much easier with 
respect to a formula, if we had a pattern where this row had been a 
constant number [points at the fourth row in Table 5]. 

This interpretation by the teacher of the fourth row is possibly influenced by a 
comment by Alice (turn 377) about the same row of Table 5, where she claims to 
refer to the difference (6) (5)f f−  (which is equal to 20), whereas she actually refers 
to the difference (6) 6f −  (which is equal to 55). Erik’s interpretation of the fourth 
row of Table 5 as consisting of (first) differences would be in agreement with the 
second differences in the fifth row (which are constantly four). I interpret the 



  
teacher’s intervention described in the above as an attempt to make a connection 
between the recursive properties of the sequence at stake (that it has quadratic 
growth) and the syntax of the desired explicit formula (that it is a polynomial of order 
two). This is however non-trivial, and there is no indication in the students’ reasoning 
which suggests that they are able to utilise the teacher’s hint: When the teacher later 
asks the students: “Do you have a kind of feeling which type of formulaic 
expressions that may emerge?” (turn 474), this is succeeded by 16 seconds of silence.   
Given the school curriculum, I believe that it is most likely that Alice and Ida have no 
previous knowledge about different types of growth of sequences. Teacher Erik’s 
intervention in this episode I interpret as an instance of a metamathematical shift 
(Brousseau, 1997): It is characterised by the phenomenon that the teacher has 
substituted for the mathematical task (to find an explicit formula in algebraic 
notation) a discussion of the logic of its solution (what can be inferred about the 
syntax of the explicit formula from the observations about the growth of the sequence 
at stake). The teacher has tried to help the students improve their proficiency in 
establishing an explicit formula for the general member of a sequence, but the chosen 
method did not bring about the desired results. Focus on a connection between 
recursive properties and the syntax of an explicit formula has not been helpful for the 
students: 

611 Ida: I’m supposed to come up with that one [explicit]… I’m all the time 
confused by the [recursive] one we figured out here. 

612 Alice: I don’t see a clear distinction between recursive and explicit (Ida: no). 
I don’t know what the different formulae are, and then I can’t just shift 
from one to the other. 

DISCUSSION 
The milieu in the observed episode does not provide any feedback that requires that 
they analyse the pattern structurally (e.g, by decomposition) to make references 
between the elements of the pattern and the syntax of a formula. The feedback 
provided by the milieu with respect to an explicit formula is the concept “connection” 
between member and position. “Connection” is a vague (everyday) notion used 
instead of the mathematical concept “functional relationship” between member and 
position. It constitutes a weakness in the milieu because it contributes to confusion 
for the students in that they do not distinguish between a recursive approach (which 
involves difference between successive members) and an explicit approach (which 
involves member as a function of position).  
When teacher Erik intervenes during Alice and Ida’s struggle to find an explicit 
formula, he acts on the milieu by directing attention to a relationship between the 
recursive and the explicit formulae through the concept of type of growth of the 
sequence at stake. He thereby changes the knowledge needed to solve the problem. 
The analysis of the episode shows that the students cannot handle the new adidactical 
situation: They do not have knowledge of type of growth of sequences, neither does 



  
the milieu provide feedback that enables them to develop the knowledge necessary to 
utilise the teacher’s intervention. However, encouraging students to connect recursive 
and explicit formulae is by Lannin et al. (2006) claimed to be important. Further, they 
recommend that tasks on generalisation of shape pattern be designed so as to promote 
students to remain connected to the figural representation (see also Steele, 2008). 
This is in line with Hewitt (1994) who warns against using contexts only to produce 
tables and spotting patterns in number sequences, because it does not give students 
insights into the structure of the original situation.  
In the following paragraphs, drawing on Måsøval (2011), I present elements that 
suggest how the milieu for algebraic generalisation of shape patterns (exemplified by 
the pattern in Figure 2) can be enhanced to prevent students from pattern spotting 
exclusively in number sequences. A figural approach to algebraic generality in shape 
patterns might involve an analysis of the invariant structure of the shape pattern by 
decomposition of its geometrical configurations according to an algorithmic rule 
(e.g., to isolate diagrammatically by encircling, or to paint with different colours). 
The decomposition presented in Figure 3 corresponds with Alice and Ida’s numerical 
observations (turns 28-30).  

 
                            1 1a =   2 1 4 1a a= + ⋅     3 2 4 2a a= + ⋅               4 3 4 3a a= + ⋅  

Figure 3. The first four elements illustrating that the differences are multiples of four 

In Figure 3, the first four elements are partitioned to illustrate that the differences of 
the sequence mapped from the shape pattern are multiples of four. Moreover, it is 
possible to see how the next element (with five dots on each side) can be made by the 
same rule: Adding a line with four dots on each side of the fourth element (the same 
way as the other lines are placed) will complete the fifth element. The arithmetic 
relations presented in Figure 3 ( 1 1a = , 2 1 4 1a a= + ⋅ , 3 2 4 2a a= + ⋅ , 4 3 4 3a a= + ⋅ ) 
have references in the partitions: It is visible how each element is composed by the 
previous element plus four lines, each line with one dot less than the position of the 
current element. Based on this, the n-th member of the sequence mapped from the 
shape pattern can be generalised by algebraic thinking as the recursive formula 

1 4 1( )n na a n−= + − , with 1 1a =  (similar to Alice and Ida’s formula, except it displays 
the initial condition). It can be noticed that the decomposition presented in Figure 3 
can also serve as reference for the representation of the sequence shown in Table 4, 



  
which is generalised in terms of an explicit formula for the n-th member of the 

sequence mapped from the shape pattern: 
1

1
1 4

n

n
i

b i
−

=

= +∑ .  

Table 4. Sequence originating from a decomposition in terms of multiples of four 

Position 1 2 3 L  n 

Number of dots 1 1 4 1+ ⋅  1 4 1 4 2+ ⋅ + ⋅  L  
1

1
1 4

n

i
i

−

=

+∑  

Another decomposition is shown in Figure 4, where the components of the first four 
elements are drawn with different colours to illustrate that each element is a sum of 
consecutive squares. The arithmetic relations presented in Figure 4 ( 2

1 1c = , 
2 2

2 2 1c = + , 2 2
3 3 2c = + , 2 2

4 4 3c = + ) can be used to identify a relationship between 
the position of a member of the sequence and the rank of the squares to be added: The 
n-th member can be generalised by algebraic thinking as 2 21nc n n= + −( ) .  

 
                           2

1 1c =   2 2
2 2 1c = +       2 2

3 3 2c = +                  2 2
4 4 3c = +  

Figure 4. The first four elements illustrating nested squares 

This is an explicit formula (syntactically different from nb ) for the n-th member of 
the sequence at stake. The formula for the n-th partial sum of an arithmetic series can 

now be used to establish that 2 2 21 4 ( 1) 2 2 1 ( 1)
2n n

nb n n n n n c= + − = − + = + − = . This 

provides a connection between the different formulae with references to the partitions 
of the alternative decompositions presented. Different decompositions by students 
provide opportunities to import different meanings for the algebraic symbols in 
formulae. Moreover, it provides opportunities to engage students in meaningful 
manipulations of algebraic expressions when students show that formulae that are 
syntactically different can be transformed into the same expression.  
In the above, features of the milieu are described that are important to make students 
connected to the geometrical configurations and thereby contribute to fulfil the two-
fold purpose of tasks on algebraic generalisation of shape patterns presented in the 
introduction.  
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