
  

YOUNG PUPILS’ GENERALISATION STRATEGIES FOR THE 
‘HANDSHAKES’ PROBLEM 

Thérèse Dooley, St. Patrick’s College, Dublin 
In describing the strategies that young pupils employ for algebraic generalisation, 
most research focuses on linear rather than quadratic problem situations. The 
strategies identified by Lannin, Barker and Townsend (2006) for the cube sticker 
(linear) problem include counting, recursion, chunking and development of an 
explicit formula. However, erroneous solutions are often given for ’high’ numbers 
because of the tendency by students to use inappropriate proportional reasoning in 
such instances. In this paper I describe the strategies that pupils aged 9 – 10 years 
used in whole-class conversation to solve the ‘handshakes’ problem, an example of a 
quadratic generalising situation. They used many (but not all) of the strategies that 
apply to linear problems and were able to verify the explicit formula that they 
developed with reference to the structural elements of the problem.  
INTRODUCTION  
The capacity of children to engage in sophisticated generalisation activities is at the 
core of the inclusion of the strand of algebra in primary mathematics curricula (e.g., 
Kaput, Blanton, & Moreno, 2008). In this regard, previous discussions at the Algebra 
working group of the Congress of European Research in Mathematics Education 
(CERME) have called for students to engage in problems the purpose of which is to 
express generality (e.g., Puig, Ainley, Arcavi, & Bagni, 2007). In this paper I 
describe the strategies that pupils aged 9 – 10 years used to solve the well-known 
‘handshakes’ problem. It builds, in particular, on a recommendation made by Barbosa 
(2011, p.427) at CERME 7 that students be provided with “tasks which allow the 
application of a diversity of [generalisation] strategies”. However central to the 
development of these strategies are (a) the role of the teacher and (b) task design. 
GENERALISATION STRATEGIES 
In early years classrooms, the emphasis in algebra is usually on the exploration of 
simple repeating and growing patterns. Since any variation usually occurs within the 
pattern itself, the focus is on single variational thinking (for example, finding 
relationships between y values rather than between x and y values). As pupils move 
through the primary school system, greater emphasis is placed on the formation of 
functional relationships and the generalisation of patterns. Functional thinking is 
described by Smith (2008, p.143) as follows: 

… representational thinking that focuses on the relationship between two (or more) 
varying quantities, specifically the kinds of thinking that lead from specific relationships 
(individual incidences) to generalizations of relationships across instances. 

Functional thinking is intrinsic to algebraic reasoning because it allows for the 
generalisation of a relationship between two varying quantities. Although young 
children are capable of thinking functionally (Blanton & Kaput, 2004; Warren, 2005), 



  
there is evidence that, throughout the primary years, they focus on pattern spotting in 
one data set rather than on the relationship between an element of a pattern and its 
position. Warren (2005) suggests that that this is the case either because single 
variational thinking is cognitively easier for children or is so engrained from school 
experience that there is a tendency to revert to it.  
Most of the research on the generalisation strategies used by pupils is based on linear 
problems (e.g., Lannin, Barker, & Townsend, 2006b; Rivera & Becker, 2008). An 
example of one such problem is the Square Matchstick Problem: 

 
Figure 1: ‘Square Matchstick’ pattern 

The number of matchsticks required to form the nth element of this sequence is 3n + 
1 (for example, 13 matchsticks are required to build the fourth element).  
Lannin, Barker and Townsend (2006a) developed a framework of generalisation 
strategies for linear problems as follows: 
• Counting: Student draws a picture or constructs a model to represent the 
situation and then counts the desired attribute. 
• Recursive: Student describes a relationship that occurs in the situation between 
consecutive values of the dependent variable. 
• Chunking: Student builds on a recursive pattern by building a unit onto known 
values of the desired attribute. In the matchsticks problem, if a student knows that ten 
matchsticks are required for the third element, s/he might calculate the number 
required for the fifth element by using a strategy such as 10 + 2 (3) (because the 
number increases by 3 each time). 
• Whole-object: Student uses a portion as a unit to construct a larger unit using 
multiples of the unit. For example, the fifth element requires 16 matchsticks and 
therefore the tenth element requires 32 – 1 (where the 1 is subtracted to take account 
of the first matchstick used in the first element). 
• Explicit: Student constructs a rule that allows for immediate calculation of any 
output value.  
According to Lannin et al. (2006b), recursive rules involve “recognising and using 
the change from term-to-term in the dependent variable” (p. 300) while explicit rules 
use “index-to-term reasoning that relates the independent variable to the dependent 
variable(s), allowing for the immediate calculation of any output variable” (ibid). For 
example, in the square matchsticks problem above, an example of the recursive rule 
is that the difference between the number of matchstick required is 3 (‘going up in 
threes’) whereas an explicit rule is ‘3n + 1’. The ‘chunking’ and ‘whole object 
strategies’ are similar and represent attempts by students to calculate values 



  
immediately. However, they are strategies that often lead to erroneous calculations. A 
student using a chunking strategy might add the fifth output value (16 in the 
matchsticks problem) to the tenth output value (31) to find the fifteenth output value 
(thus finding a solution of 47 instead of 46). A false ‘whole-object’ technique that is 
prevalently used by students is the application of direct proportion or linearity (for 
example, doubling the number of matchsticks required for ten to find that for 20 and 
failing to take account of the ‘first’ matchstick in the pattern). Stacey (1989) suggests 
that this tends to be evoked when ‘far generalisation’ (an input value that renders the 
step by step approach unfeasible for example, finding the number of matchsticks 
required in the 50th element) is required. She found this to be the case even when 
students have made correct use of counting or a functional rule for smaller input 
values.  This inappropriate proportional reasoning (or the ‘illusion of linearity’) has 
been found to exist among students of different ages and in a variety of mathematical 
domains (De Bock, Van Dooren, Janssens, & Verschaffel, 2002).  
While the strategies outlined here represent increasingly sophisticated means of 
generating solutions for any n, Lannin et al (2006a) recognise the need not only for 
students to formulate rules but also to engage in explanation and justification of these 
rules. In this regard, Rowland (1999) makes a distinction between empirical 
generalisation - which is achieved by considering the form of the results - and 
structural generalisation which is made by investigation of the underlying meanings, 
structures or procedures of the problem at hand. For example in the ‘square 
matchstick’ problem, a student might notice the ‘going up in threes’ pattern 
(empirical) or be able to verify the pattern in terms of the need to add three sticks in 
order to make a new square (structural).  
There is little research on the kind of generalisation strategies that pupils might use 
for non-linear patterns. In research on how primary school pupils abstract 
mathematical entities in the context of teacher-led discussion, I taught a series of 
lessons in three different primary schools in Ireland (Dooley, 2010). My research 
design – a teaching experiment – entailed the development of a hypothetical learning 
trajectory in advance of each lesson (Cobb, 2000). The one  that I formed in advance 
of a lesson on a non-linear problem (the ‘handshakes’ problem) was based on Lannin 
et al’s framework. I used it in conjunction with RBC (Schwartz, Dreyfus, & 
Hershkowitz, 2009) for analysis purposes; however, in this paper I report only on the 
suitability of the framework as a learning trajectory in this particular situation. 
BACKGROUND 
The lesson which is the subject of this paper is Chess (the ‘handshakes’ problem). It 
reads as follows:  

In a chess league each participant plays a game of chess with all other participants. How 
many games will there be if there are 3 participants? 10 participants? 20? Is there a way 
to find the number of games for any number of participants? 



  
While the ‘Chess’ problem is a quadratic problem situation and therefore could be 
expected to be more cognitively challenging than linear problems for pupils, there are 
many ways that the problem might be solved. I refer here to those that are most likely 
to emerge in a primary school setting. This is not to exclude the possibility that a 
primary student might notice or use others. One way, as shown in table 1, is to make 
a list and look for a pattern: 

Number of People (x) Number of Games (y) Difference (d) 

1 0  

2 1 1 

3 3 2 

4 6 3 

5 10 4 

6 15 5 

7 21 6 

8 28 7 

9 36 8 

10 45 9 

Table 1: Table of values for ‘Chess Problem’ 

The differences, d, between consecutive values y form the sequence of natural 
numbers. A related observation is that a number in the y column might be found by 
adding x and y values in the previous row (e.g., 7 + 21 = 28, referred to in future as 
the x + y method). These patterns are contingent on writing x and y values in 
consecutive order. The function mapping x to y is  

 y =  . 

This might emerge from inspection of the relationship between the x and y values. 
The same formula emerges if one gives consideration to the symmetric nature of the 
activity, that is, there is one game for each ‘pair’ (Rowland, 2003). 
Another way to solve this problem is to consider the number of games played by each 
person, that is, the first person plays a Chess game with seven others, the second with 
six more, the third with five more and so on. The solution for eight people then is 7 + 
6 + 5 + 4 + 3 + 2 + 1 giving a total of 28 games. Although this method (referred to in 
future as ‘summation’) generalises for all numbers it becomes cumbersome for larger 
numbers, especially if the numbers are added in consecutive order.  
While the lesson took place over two consecutive days, a related lesson that took 
place a month earlier with this class was one entitled Friendship Notes. ‘Friendship 
Notes’ reads as follows: 
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As part of Friendship Week in Greenville School, each pupil writes a short note to each 
other pupil in his/her class. Each pupil is given one sheet of paper for each note. How 
many sheets of paper are needed if there are 5 pupils in a class? 10 pupils? What would 
be the number [of sheets] for any number of pupils? 

Both Friendship Notes and Chess are characterised by non-reflexivity (that is, no 
element of a set relates to itself). The main difference between the activities lies in 
the property of symmetry. ‘Chess’ is symmetrical because if A relates to (‘competes 
with’) B, then it follows that B relates to A. However, in ‘Friendship Notes’, if A 
relates to (‘writes to’) B, the reciprocal relationship is not implied. For this reason the 
function mapping x (the number of people) to y (the number of notes) in the 
Friendships Notes is y = x(x-1) while in Chess, y = ½ x(x-1) where x represents the 
number of people and y the number of games. Of relevance to this paper is that pupils 
had developed a ‘rule’ – expressed verbally – for the solution of any x in Friendship 
Notes.  
As previously mentioned the Chess lesson took place over two consecutive days (the 
daily sessions will be referred to hereafter as Chess 1 and Chess 2). The format of 
both Chess 1 and Chess 2 was introductory whole-class discussion and small group 
work followed by whole-class discussion. In group work pupils worked in self-
selecting pairs or triads.  In Chess 1, there was a whole class lesson in which 
consideration was given to the number of games that would apply to 1 – 5 players. 
Pupils than worked in groups to consider cases of 1 – 10 players – for this part of the 
lesson they filled in a table similar to that shown in Table 1 above (without the 
‘difference’ column).   At the end of the lesson there was a plenary discussion on the 
number for 20 players. In Chess 2, there was a review of the previous day’s lesson. 
During the group-work phase they were asked to fill in a table for 11 – 20 players and 
during the final discussion the focus was on the generation of a rule for any number 
of players. There were 31 pupils in the class and the school was located in an area of 
middle socio-economic status1. Data collected included audiotapes of whole-class 
and small-group conversations, pupils written artefacts, field notes and digital 
photographs of activities. Video data were not collected due to ethical constraints.  
THE LESSON 
There was a total of 712 turns in the whole-class discussion phases of both lessons. 
Up to turn 196, the count strategy was employed. For example, when considering the 
number of games for four competitors, Killian erroneously suggested five games but 
used a counting procedure2: 

136 Killian: Five. 
137 TD: Why do you think five? 
138 Killian: Cos Enda plays three and then Barry plays two, then David plays 

Colin , that’s ( ) 
139 TD: So just say that, explain that to me again ... you’ve got …? 
140 Killian: So David plays the other three. 



  
141 TD: So how many games is that? 
142 Killian: Three. 
143 TD: Right, go on. 
144 Killian: And then Barry plays the other two and then Colin plays Barry…six. 

In turn 196, Anne used an incorrect recursive strategy and suggested that nine games 
would be played by four competitors: 

196 Anne: Em, nine. 
197 TD: Why are you thinking nine? 
198 Anne: Because it’s going up in threes. 

The first time that there was any allusion to an explicit rule was in turn 206 when 
Fiona used the summation rule. She first counted the five pupils at the top of the 
room but then stated a way of working in which no mention of pupils was made: 

202 Fiona: Well, if Enda would play four people and then Barry would have to 
play eh … three people … 

203 TD: Yeah. 
204 Fiona: … and then Colin would have to play two people and then David 

would have to play one. 
205 TD: So what do you think it would be? How would you find out the 

answer? ... What would you do to find out the answer? 
206 Fiona: Eh, four, three, two and one. 

During group work, most pupils used the x + y recursion method to find solutions for 
seven, eight, nine and ten competitors. However, when having a whole-class 
discussion at the end of the first session about a larger number of competitors (i.e., 
20), there was evidence of inappropriate linear reasoning on the part of some pupils. 
For example, Desmond doubled the number of games for ten competitors to find the 
solution for 20: 

357 Desmond: Ninety. 
358 TD: Getting ninety, why do you think it’s ninety for twenty people? 
359 Desmond: Eh ten is forty-five.  

The explicit rule that was being expressed towards the conclusion of the lesson 
related to ‘summation’. For example, Fiona used the formula she had developed for 
five competitors to find the solution for 20 competitors: 

402 Fiona: Well you could em you could do em add one, two, three, four, five, 
six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, 
sixteen up to nineteen. 

Brenda, Myles and David articulated a similar strategy. Anne suggested multiplying 
20 by 19 to find the solution and a short while later, David tentatively suggested a 
formula: 

432 David: Em, well, it might not work all the time but twenty nineteens is three 
hundred and eighty and half that is one hundred and ninety … 

However, he did not justify his conjecture structurally.  



  
In Chess 2, the algebraic strategies most often used were ‘recursion’ and ‘explicit 
rule’. The counting strategy was not evident. In the lesson introduction, Liam used 
the x + y method recursively: 

447 Liam: Just really one plus zero is one, two plus one is three, three plus three 
is six, four plus six is ten, five plus ten is fifteen, … eh six plus fifteen 
is twenty-one, eh seven plus twenty-one is twenty-eight, nine eh eight 
plus twenty-eight is thirty-six, nine plus thirty-six is forty-five. 

During group work, pupils were given a worksheet in which they were asked to give 
consideration to the number of games of chess that would be played in the case of 11 
to 20 competitors and thereafter to 40 competitors. The majority of them used the x + 
y strategy to complete the worksheets for 11 to 20 competitors. However, in the 
follow-up discussion on the number of games for large numbers of competitors, 
David reiterated the rule he had found on day 1: 

635 David:  Multiply it by the number less … 
636 TD:  Hm, hm. 
637 David: … and then half it. 

Shortly after this, Enda observed the similarity between Chess and Friendship Notes.  
639 Enda: It looks like … it’s pretty much the very same as the friendship cards, 

it seems kind of like that. 
Barry reflected on the non-reflective nature of both activities, that is  

641 Barry: It’s kind of the same thing as, eh, you wouldn’t have to do themselves 
so there’s going to be one less. 

Both Myles and Colin gave consideration to the structural difference between the two 
activities. Colin gave the following description: 

651 Colin: Em, well cos in the friendship notes you have to give two because if 
there were three you would have to give one to each person … 

652 TD: Hm, hm. 
653 Colin: … and everyone has to give one to each person, so it’s the same as 

three by two 
654 TD: Hm, hm. 
655 Colin: Eh, and in chess you only have to play them once even if they 

challenge you 
656 TD: Hm, hm. 

On foot of these ‘structural’ deliberations, Enda announced that 
662 Enda: Eh well, I actually definitely agree with David’s way by doing the 

friendship notes, the same way as the friendship notes and halving it 
… 

It would seem that the justification offered by Barry, Myles and Colin was sufficient 
to convince him that the explicit formula was indeed appropriate. In follow-up 
reflective accounts most pupils aligned themselves with ‘David’s method’, although 
it is unclear if they took account of the structural verification of his formula. 



  
DISCUSSION 
The strategies that were used by this group of pupils to solve the Chess problem 
included counting, recursion, whole object (incorrectly) and formation of an explicit 
rule. They did not appear to use the ‘chunking’ strategy. The explicit rules included 
both summation and a more general formula. Towards the conclusion of the lesson 
some pupils were able to verify the explicit rule (formula) with reference to the 
structure of the problem. Although most pupils aligned themselves with the formula 
at the end of the lesson, it is not clear that all had fully understood the structural 
dimension. What this paper shows, however, is the variety of strategies that pupils 
can use to solve complex problems. It could be argued that the format of the lesson 
(that is the use of consecutive lower numbers initially and later ‘higher’ numbers) lent 
itself to a progression from count through recursion and eventually to the use of a 
formula. In this regard, Warren, Cooper, and Lamb (2006) have alluded to the 
consecutive listing of x, y values as a factor that inhibits the development of relational 
or functional thinking. What seems to be the case in this lesson was that, in general, 
pupils’ choice of strategy was based on that which seemed to be most efficient for the 
task at hand. However, the dominance of the x + y method can be attributed to the use 
of a table and it would be interesting to see what kind of strategies would emerge if 
the lesson were designed differently. 
In the lesson described in this chapter, the pupils used natural language to express the 
relationship between the number of players and the number of games. For David’s 
statement in turns 635 and 637 (“Multiply it by the number less … and then half it”) 
could be described in conventional algebraic terms as ½ n (n-1). While there well 
might be concern about the lack of rigor in children’s use of terms, I would argue that 
pupils need to have the opportunity to speak thus before embarking on more 
conventional symbolic terms and that it is perhaps the lack of opportunity to do so 
that has contributed to the ‘Algebra Problem’ (Kaput, 2008). This resonates with an 
argument, made by Caspi and Sfard at CERME 7, that pupils’ informal discourse can 
serve as a powerful resource for the development of more formal algebraic ideas 
(Caspi & Sfard, 2011). 
Lannin (2005) found that students rarely justify their generalisations in small group 
situations and acknowledged the role played by a teacher in pressing for such 
justification.  It was similar in the lesson described here and, in fact, in the plenary 
phase at the end of each session, probes by the teacher led to students justifying their 
choices and building on each other’s thinking (e.g., in turn 641 Barry built on Enda’s 
conjecture). This was a significant factor in developing algebraic thinking. 
Furthermore, the use of an activity with some variation a month previously laid the 
ground for structural verification of the formula. It is likely that were it not for the 
Friendship Notes lesson, pupils’ thinking would not have progressed beyond the 
empirical level. To this end, the sequencing of activities by teachers is an important 
element in stimulating and developing pupils’ generalisation strategies. 



  
1: In the Republic of Ireland, indicators such as unemployment levels, housing, number of medical 
card holders and information on basic literacy and numeracy are used to determine socio-economic 
status of schools.  

2: Transcript conventions (related to this paper) are: TD: the researcher/teacher (myself); … : a 
short pause; ( ): inaudible input. 
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