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This paper describes a study that assesses theetenge of elementary students in
flexible mental calculation. Based on a specificspective on flexibility that was
derived from the relevant literature and prior raseh, a qualitative interview was
used to field test and identify degrees of fleXibiln elementary students from
different classrooms in South Germany and North olaa. This paper gives
theoretical background, data analysis and a quigkfisummary of early results.
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INTRODUCTION

Flexibility in mental calculation has been consetem highly desirable ability in
elementary math education for at least the lastadec(e.g., Anghileri, 2001;
National Council of Teachers of Mathematics, 208€lter, 2000). The late twentieth
century saw increasing interest in students’ tmgkand in their techniques for
performing mental addition and subtraction.

With the start of the twenty-first century, resdems have begun to explore elements
of flexibility in mental addition and subtractiom this vein different results have
been reported concerning students preferencefidowtitten computing algorithms
(Selter, 2000), the negative impact of learningekgmples on flexibility (Beishuizen
& Klein, 1998; Heirdsfield & Cooper, 2004), varioudluencing factors on students’
strategies (Torbeyns, De Smedt, Ghesquiere, & Warfsel, 2009; Blote, Klein, &
Beishuizen, 2000; Rathgeb-Schnierer, 2006) and oagpes to math education
which can enhance flexibility in mental calculatiqfeinze, Marschick, &
Lipowsky, 2009; Rathgeb-Schnierer, 2006).

In the context of this recent research, mentalutaton means solving multidigit
arithmetic problems mentally without using paperd goencil procedures. For
flexibility in mental calculation a deep understany of number and operation
relationships and knowledge of basic facts and feawilies is required (Heirdsfield
& Cooper, 2004; Threlfall, 2002).

With the ongoing study we pursue two aims: Fist,want to clarify the concept of
flexibility in mental calculation based on theocali reflections and prior research.
Second, we describe a study which investigates henestudents from different
classrooms show different degrees of flexibility nmental calculation. Since our
theoretical framework introduces a new perspectore flexibility in mental
calculation, we describe this perspective andhigications for the study’s design.



THEORETICAL FRAMEWORK
Pr ocess of calculation

Results of a previous study (Rathgeb-Schnierer,620010), in which the
development of strategies of mental calculationlbesen investigated, suggested that
it is useful to examine the process of calculationgeneral, before focusing on
flexible mental calculation. Based on this studg tbllowing model was developed
to describe the process of calculation (Rathgeby®&chr, 2011): Solving problems
iIs a complex interaction between different domathat implement different
functions with different degrees of explicationgF1).
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Fig. 1. Domains of calculation process (Rathgeb-Schnierer, 2011)

In our work it has been necessary to consider thigenct but interrelated domains:
methods of calculation, cognitive elements, andsstéar solution. Each domain is a
necessary but not sufficient condition for a catioih process. Taken together, the
domains allow us to examine mental flexibility ipgedent of a problem’s solution.
Each domain is described more fully below.

Methods of calculationFor solving any given problem, a student can uskiphe
methods of calculation such as te@ndard algorithm, partial sums, or mental
calculation (e.g., Selter, 2000). However, a method describesway a solution
process can be done but not how an answer is datntor example, the standard
algorithm describes a way an addition problem 8k& + 56 can be solved. First, the
terms of the sum may be written correctly, one Wweloe other to determine the sum
of each column separately. This method doesn't sth@nactual process for adding
numbers. Looking at the example above, there amyrpossible tools for solution
that could be used to find the answer for 6 joingh 7, like counting, drawing on
basic facts, or using other adaptive strategic sebnshort, obtaining a problem
solution by itself does not shed light on the mechanism(s) used heese that
solution.

Cognitive elementsStudents’ solution processes are based on specifieriences
that we designate with the term “cognitive elemérfaich cognitive elements that
sustain a solution process can be leaprededureqsuch as computing algorithms),
or they can be recognizatumber characteristicgsuch as number patterns and
relationships) (Macintyre & Forrester, 2003; Thadif2009). In reality, it is difficult



to reconstruct the basic cognitive elements thatblehind an exposed solution
process as shown by Tanja, who solves the suldraptoblem 46 — 19 (data from a
prior project, Rathgeb-Schnierer, 2006):

Tanja: Um. 46 (.) minus (..) 9 — no, | do now nsru— and then, this equals 40 and
then minus 3 equals — thirty-seven and then mli@usquals 27.

Tanja exhibits a “Begin-With-One-Number-Method” fem et al., 1997) by
decomposing the subtrahend and subtracting it Isyeptep. Whether her solution
derives from a learned procedure, or from recognitand use of number patterns
and relationships, or from a combination of the wemnot be determined from the
information. However, for a correct assessment ahjd@s abilities in mental
calculation, it is crucial to know which cognitivdements her solution process
entails. A procedure-based solution can be conduatechanically, like following
steps in a recipe, whereas a solution based onewchiaracteristics entails dynamic
use of knowledge of numbers and relationships.

Tools for solution:To find the answer to a problem, cognitive elersemy on
additionaltools that are used and combined in context. Specifitstfor solution
may becounting referring tobasic factsor using other adaptivestrategic mearis
Our sense of these “strategic means” is that they et holistic strategies or
cognitive menus that complete a solution path;ematthey are distinct devices that
can be combined in flexible ways to modify compperblems to make them easier.
Such strategic means include, for example, decomgosand composing
(65+28=60+20+5+5+3), transforming a problem (464B20), deriving the
solution from a known problem (if 7 joined with guals 14, the answer to 7 joined
with 8 equals 15, since 8 is one more than 7),usmmg decade analogies (if 4 joined
with 5 is 9, 40 joined with 50 must be 90) (Thré|fa002).

Whenever students solve a problem mentally, elesnehtall three domains are
combined, and depending on that combination, ona waentify different
competencies. In judging mental flexibility, thesea meaningful difference between
a student who mentally replicates a mechanicabyned procedure and one who
dynamically applies number sense, patterns, anblgmrocharacteristics to achieve a
solution. This distinction is exemplified by theasoning Simone shows with the
subtraction problem 46-19:

Simone: If | do add ongfints at the problemthen | have got 20 here and 47 there,
and then it is easier to calculate.

Interviewer: Which problem do you solve then?
Simone: 47-20. This equals 26 (.) no 27.
Interviewer: And - are you sure that you get thmesanswer to 47-20 and 46-19?

Simone: Yes, because | have added one to both mapdoed then | have more here
(points to 47 and take away more themgo{nts to 20.



Obviously Simone has solved the problem by men&dutation. First, she has
transformed the actual problem into a new one pihegerves the difference between
the numbers. For Simone, the transformed problemdn®st trivial. Her solution
relies on a combination of subtraction basic faatsl her knowledge of decade
analogies. Simone has recognized the numericalimpiyxof 19 to 20, and she
adapted this knowledge to the situation by tramsfog the problem. What we
describe in the case of Simone is called “zeromidy Threlfall (2009, 47).

Flexibility in mental calculation

Multiple, inconsistent perspectives on the condeptibility in mental calculation
exist in the literature (Star & Newton, 2009). De@gimg on the definition used,
different ways of operationalization are implied.

We choose to navigate through this somewhat camjuserrain by [...] defining
flexibility as knowledge of multiple solutions asellvas the ability and tendency to
selectively choose the most appropriate ones fajivan problem and a particular
problem-solving goal (Star & Newton 2009, 558).

In the present article, we will, henceforth, use tlual term ‘flexibility/adaptivity’ as the
overall term, ‘flexibility’ for the use of multiplestrategies, and ‘adaptivity’ for making
appropriate strategy choices (Verschaffel, Luwebrbeyns, & Van Dooren, 2009,
337/338).

First [...] we employed the definition of strategexibility as choosing among different

strategies simply on the basis of the charactesistf the task, i.e. as using the
compensation strategy on problems with a unit ddgdr 9. Second, we also applied a
more sophisticated definition wherein strategy ifddity is conceived as selecting the

strategy that brings the child most quickly to anwaate answer to the problem (Torbeyns
et al., 2009, 583).

All these definitions have in common the idea flatibility in mental calculation is
connected — explicit or implicit — with adaptiondameans an appropriate way of
acting when faced with a problem. What exactly esant by appropriate and how an
appropriate way of acting can be identified is codeed differently (Rechtsteiner-
Merz in prep.). There is, on the one hand, theomotf choice in selecting an
appropriate solution to a given problem (and peshaqeluding the choice of a
solution deemed most appropriate). On the othed hitwe appropriate way of acting
when faced with a problem may not be determinethbl¢ characteristics but by the
speed of obtaining a solution. In both views theukis on mental outcomes, since
researchers have typically regarded only one domiihe calculation process (Fig.
1), the tools for solution.

Similar to Threlfall (2002, 2009) and prior resda(Rathgeb-Schnierer, 2006, 2010)
we also define flexibility in mental calculation asvay of acting appropriately, but
we have a different conception of what is meantabpropriate. Rather than the
choice of the most suitable strategy or the quickesy of obtaining a solution,



appropriate acting for us means to match the coatioim of strategic means (see
above) to the recognized number patterns and eakttips of a given problem in the
context of processing a problem solution. The raedam of problem characteristics,
number patterns and relationships, and their ussdiwing a problem again depends
on a student’s knowledge of numbers and operatownshat Threlfall (2002, 29)
terms an “interaction between noticing and know&dg

When faced with a fresh problem, the child or aeib follows different solution paths
depending on the numbers does not do so by thirddiogit what the alternatives are and
trying to decide which one to do. Rather, he or 8heks about the numbers in the
problem, noticing their characteristics and whatmbars they are close to, and
considering possibilities for partitioning or roung them. (Threlfall 2002, 41)

Our discussion leads us to posit a new perspeciivélexible mental calculation
because we are interested in mental processesutiuarlie the outcomes. That
means, related to the model of process of calawafFig. 1), we focus on two
different domains to identify the degree of flekilgi in students: the tools for
solution and the cognitive elements that suppatgblution processes. Only if the
tools of solution are linked in a dynamic way tmlpem characteristics, number
patterns, and relationships would we consider adeace of flexibility in mental
calculation. Hence our central questions about atdl#xibility are: What problem
characteristics, number patterns, and relationdbigptudents recognize? And how do
they use problem characteristics, number patteamsl relationships to solve
problems?

OVERVIEW ON THE PROJECT
Questions and Assumptions

We investigated flexible mental calculation in e&mary students from different
classrooms in different countries. Referring tdiearesearch and our perspective on
flexibility, the project is based on fundamentad@sptions: First, there are different
features in students’ ways of acting when facechvaih addition or subtraction
problem that can be considered as indicators ofilkilgy. One feature is the
recognition of problem characteristics, numbergratt, and relationships in a given
problem, and the other one is the dynamic use ajg®ized number patterns and
relationships for solving a problem. Second, fl@xipin calculation is not an all-or-
none-phenomenon; it occurs in varying degrees @&dtischnierer, 2010).

Research questions concerning the sorting taskessarch instrumenDoes sorting
problem cards into categories “easy” or “hard” helfiate mental flexibility when it

is available? Do differences appear regarding rspiind reasoning, and can they be
linked to different degrees of flexibility?

Research questions concerning patterns that appeasorting, reasoning, and
solving problems:Do students describe reasoning about problem ctegistics,



number patterns, and relationships? Do students their tools for solution to
recognized problem characteristics, number pattearsd relationships? Can
different degrees of flexibility be identified apdoled into general types?

Research questions concerning different classrodasdifferences and tendencies
show up in sorting, reasoning, and using toolstution for students from different
math classrooms? Do differences appear regardingi@and reasoning, and can
they be linked to different degrees of flexibility?

Design

Based on the theoretical model of flexibility indreced earlier, a qualitative study
has been designed and carried out. Since we weseedted in mental processes
underlying the process of solving a problem, weidksgt on probing interviews as a
research instrument (see following paragraph). Se¢agradersaand fourth graders
from different instructional contexts in Germanya(in-Wurttemberg) and USA
(Charlotte, North Carolina) were selected. In ta&al classrooms, 3 second grades
and 2 fourth grades in each country, were samphMs chose about eight students
form each classroom. Students with learning digaslin math or with language
problems were excluded in order to achieve a mihieel of understanding of
number and operation. Based on the judgment oftlliesroom teacher, we got a
sample representing predominantly middle and highiewers and carried out
interviews with a total 51 second graders and 3ittfograders.

Interviews

We developed a qualitative, problem-oriented inesthat contains twelve two-
digit addition and subtraction problems. Each peabivas designed to show at least
one special feature, sometimes more than one. @ingms incorporated features
like double and half relations, same numbers ate¢hs and ones place, one number
close to ten, both numbers close together, numaeithe ones place equal ten,
reverse problems, and problems that require regmguplhese problems were
displayed on small cards: 33+33, 66-33, 56+29, 94631-29, 73+26, 88-34, 34+36,
65+35, 95-15, 47+28 and 63-25.

Interviews had three parts, the first for sortimglgems and talking about the sorting
procedure, the second for solving problems, andthive for comparing selected

problems. In the first step, cards were mixed and dut on the table. Students were
encouraged to look carefully at the numbers in gaoblem and sort the problems in
two categories, “easy” and “hard” (these labelsen@daced at each side of the table).
After a card was placed either to the “hard” or ‘thasy” side (occasionally students
decided on the middle), we asked: “Why is this pgobeasy or hard for you?” In the

second step we asked the students to choose saflkems from each side and to
tell us what they were thinking when they solved groblem. We always started

with the easy side and skipped all the problemshbd already been solved during
the sorting process. In the third step we focusedeadected problems (63-25 and 88-



34; 47+28 and 73+26) and encouraged students tpar@these in order to estimate
whether one of each pair might be easier.

Students were interviewed one-on-one for 15 to 3Autas. Video and audio
recording was done for the whole interview.

Interviews were conducted by one researcher arldgad in the last two months of
the academic year (Germany 2010 and 2012, USA 20All)interviews were
transcribed in their original language for datalysia.

Data Analysis

Two coding systems that include both a priori amductive meanings were used.
One system was used to classify students’ toolsdartion; the other one was used
to catalog reasoning for easy and hard problems.

The following example illustrates how a part of dwding system was developed.
Data suggested that reasoning could be dividedun ¢ore categories (first level):
reasoning by problem characteristics — easy (AiBasoning by problem

characteristics — hard (A/2), reasoning by wayssolution — easy (B/1) and

reasoning by ways of solution — hard (B/2).

Two different students explained why 33+33 is asygaoblem:
S 1: Because there's the same numbers in eagpare. (A/1)
S 2: Because first | add 30 and 3, and then | add 3 (B/1)

To each core category we developed codes (secoral) leased on possible
characteristics of numbers (e.g., Fig. 2) and thseally described solution
strategies (e.g., Selter, 2000; Threlfall, 2002)e Bub-codes (third level) arose from
the data again. All together we got three levelscafegories/codes that were
invented by combining data-based and theory-baseethads. With this
differentiated coding system students’ utterancas be exactly assigned. See
student 1 in the example above: His utterancesigiasd on the first level to the core
category “reasoning by characteristics — easy,’tlom second level to the code
“special numbers”, and on the third level to thb-sode “double digits”.

First resultsand outlook on further data analyses

At the moment we have transcribed 70 interviews eaieégorized one third of the
data using both coding systems. While we cannopg@tide definite answers to our
research questions, we can report on some iniattleps we have observed. We
illustrate these patterns based on a sample oke2dnsl grade students from three
German classrooms.



Core category: reasoning by characteristic for ,easy“ problems

(first level)

Codes (second level) Sub-codes (third level)
analogies between tens and ones [5]

size of numbers both numbers are small [1]
numbers at the ones place « sumis less than ten [1]

remaining or regrouping is required [1]

first number smaller than second number [1]
sum of ten at the ones place [6]

number 5 at both ones place [14]

relationships of tasks « associativity[1]
inverse problem [7]
relationships of numbers « double or half [10]
number close to a ten [2]
range [5]
known facts «  parts of the problem are known by heart [18]

*  whole problem is known by heart [10]

special digits / numbers «  same numbers [5]
number with nine [2]
double digits (33) [5]

Fig. 2: Reasonsfor easy problems (numbersin brackets show frequency)

Overall, we have found a much larger than expectetety of patterns in students’

reasoning for easy and hard problems. Already éensdimple of 21 second graders
various reasons for easy problems that refer tbleno characteristics appeared (Fig.
2). Such variation can be considered as a hint tiatsorting task encourages
students to examine problems carefully; to reflaelbbut problem characteristics,

number patterns, and relationships; and to forrausatiution arguments based on
that recognition. In this vein, our data suggebtt sorting has diagnostic value in
assessing the underlying degree of flexibility iatmstructures.
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Fig. 3 Ways of reasoning

Regarding the ways of reasoning students in oupkammave displayed (Fig. 3), it
appears that 2/30f the students tend to have preferences: 9 prefsoning by
ways of solution; 5 prefer reasoning by charadiess7 students reason either way.
Regarding the students individually, it appeard thair pattern of reasoning can be
described as either “dynamic” or “static.” For exste, Bartosch (3_Ba) depicted 8
different kinds of reasons (6 characteristics ars@lRtions); he would be considered
as “dynamic”. In contrast, Marcel (9_Ma), who shavemnly two different reasons (2
solutions), would be considered as “static”.

Since this is work in progress, our current perspecon the data is only on a
descriptive level. Building on Kelle & Kluge (201®ur plan is to construct types by



interrelating two feature spaces: the way of reagpmand the tools for solution.

Therefore, we use a two-dimensional space with wafyseasoning (from one

exhibited way, to various ways) plotted on one axid tools for solution (from one

exhibited tool to various toolp)otted on the other axis. Depending on charadteris
patterns students display in reasoning and solwwgwill assign each student to a
special point in the two-dimensional space and pghoke who exhibit the same
patterns of features. In a last step of analyggian on linking the types we have
found to the teachers’ math instruction and didpmss to see if students’ math
experiences are associated with degrees of flexibil
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