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For fostering conceptual understanding of fractions, connecting different representa-
tions is an often used design principle. This paper shows that this design principle is 
necessary but not sufficient and should be complemented by focussing structural rela-
tions. In a design research study in grade 6, different strategies for this principle were 
developed and empirically investigated with respect to the generated learning process-
es. The activities were organized around the so-called fraction bar board, a visual mod-
el  that allows a comprehensive structural view on fractions, order and equivalence. 
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Students’ difficulties with conceptual understanding of fractions have often been shown 
empirically (e.g., Hasemann, 1981; Behr et al, 1992; Aksu, 1997). As a consequence, 
fostering students’ conceptual understanding for fractions has become a central aim for 
many curriculum design projects all over the world (e.g., Bokhove, et al., 1996; Cramer 
et al., 2009; Streefland, 1991; Prediger et al., 2013). Before developing algorithmic 
skills, students should develop meanings for fractions and for the basic fraction con-
cepts like order and equivalence of fractions. These curriculum projects vary in the cho-
sen contexts and in their priorities for different fraction models: Most emphasis is usual-
ly given to the part-whole model, whereas varying priority is attributed to other im-
portant models like measure, ratio, operator, or quotient in situations of equal sharing 
(see Behr et al., 1992, for an overview on models). Despite of different choices of prior-
itized models and of contexts, nearly all curriculum projects share the design principle 
of relating multiple representations, namely graphical, symbolic, verbal and enactive 
representations (Lesh, 1979). Most of them also refer to the principles of including stu-
dents’ everyday experiences by means of suitable contexts and initiating mathematical 
discussions on mathematically rich open problems (Freudenthal, 1983). 
This paper intends to show that connecting different representations is a necessary but 
yet not sufficient condition for developing conceptual understanding, because especially 
weaker students tend not to construct the mathematically intended structural relations 
automatically. That is why the design principle explicitly focussing structural relations 
should complement the set of design principles. The empirical findings that support the 
importance of this principle and design strategies for implementing it for the topic ‘or-
der and equivalence of fractions’ are drawn from several design experiments that were 
iteratively conducted within the long term design research project KOSIMA (Hußmann, 
Leuders, Barzel, & Prediger, 2011).  



  
1. THEORETICAL AND EMPIRICAL STARTING POINTS 
1.1 Fraction bars as important visual model 
As developing conceptual understanding of mathematical objects necessitates to relate 
different representations (Lesh 1979), the concrete choice of contexts and concrete 
graphical representations is crucial for the mental models that students can develop. In 
line with many other curriculum projects (see above), our design approach starts with 
identifying and interpreting fractions in a variety of situations of equal sharing and part-
whole situations, being graphically represented in rectangles, circles, bars and other pic-
tures. In the second unit on order and equivalence of fractions (Prediger et al., 2013), 
the learning arrangement focuses on fraction bars as the central visual model that has to 
be connected to symbolic and verbal representations (bars are also used by other curric-
ulum projects, e.g. van de Walle & Thompson, 1984; Cramer et al., 2009; Bokhove et 
al., 1996).  

 
Figure 1. Three steps from contextual fraction bars to abstract fraction bars to the number line 

In our curriculum, two everyday context situations support the introduction of fraction 
bars (Figure 1): (1a) Comparing goals for an unequal number of trials, a situation which 
provokes students to invent the mathematical concept of relative frequencies for meas-
uring fairly, (1b) progress bars of graphical computer interfaces, showing e.g. the pro-
gress of a download. (2) From these context situations, we derive an abstract fraction 
bar as the central representation for order and equivalence. (3) In the last step (not treat-
ed in this paper), we abstract the fraction bar to the number line and use it as a bridging 
tool between part –whole and measure model (cf. Keijzer & Terwel, 2003, p.  288). 
These bridging functions are the main reason for choosing bars as main visual model. 
 
1.2 Limits of graphical representations – a snapshot from an initial case study 
Interpreting fraction bars is not from the beginning evident for all students, as could be 
shown in a case study on low-achieving students (Prediger, 2013). The two boys Cavit 
and Ismet from grade 7 followed a typical German curriculum with a focus on relating 



  
representations, but without real focus on meaning. In the conducted interview, both 
boys easily assigned the symbolic representations 3/4 and 3/5 to given fraction bars. In 
the transcript, Cavit explains how to find 3/5 in the bar:  
9 Interviewer ... what in this picture (hints to the fraction bars) 

 shows you the fraction?  
10 Cavit Ehm...Ehm the ... first, you have to count the small pieces.  

These are five. And then, the three coloured ones, three fifth.  
   
In spite of this correct answer, Ismet and Cavit compare (in the next sequence) the sym-
bolic fractions 3/5 and 3/4 by commonly deciding that 3/5 was bigger. The interviewer 
asked them to use the graphical representation to validate their judgement:  
17 Interviewer ... how can you see in the picture that this fraction (hints to 3/5), when you say,  

it is greater than this (hints to 3/4) How can you see that in the picture?  
...   
24 Ismet [...] because here (hints to the 3/5 bar) it is five, and here are four (hints to the 3/4 

bar) then you see that this (the 3/5 bar) is large and this (the  3/4 bar) is small [...] 
   
Although line 10 showed the boys’ capability to switch between the graphical and the 
symbolic representations without mistakes, they order the fractions idiosyncratically. 
Ismet’s explanation in line 24 shows that relating representations does not guarantee to 
see the mathematically intended structural relations in a graphical representation: In-
stead of comparing the length of the coloured part, Ismet counts the pieces and argues 
that 3/5 is larger because its whole is divided into more pieces than the one for 3/4. This 
limit of graphical representations has also been found for other arithmetical topics 
(Steinbring, 2005): Teaching students to draw correctly is not sufficient to guarantee 
that they mentally construct the intended structural relations which mathematicians see 
in a specific graphical or symbolic representation. Cavit and Ismet could identify the 
right fraction bar and described the drawing procedure. However, their linguistic ex-
pression of the relation between the part 3 and the whole 5 was restricted to the word 
“and” (line 10). Ismet’s idiosyncratic interpretation of the order and this vague expres-
sion are indicators for the structural relation between part and whole not being com-
pletely mentally constructed. Hence, further support is needed (cf. Prediger 2013). 
The short case study illustrates the necessity to understand ‘fraction’ as a relational con-
cept (Steinbring, 2005), in the sense that it grasps the structural relation between the part 
and the whole. Although many students mentally construct this relation simply from 
dealing with graphical representations, this can be challenging for low-achieving stu-
dents (similarly Moseley, 2005). From these empirical and epistemological starting 
points, the following design challenge and empirical research question was concluded 
for a design research study aiming at overcoming the limits of graphical representations: 
How can we foster all students’ mental constructions of the intended structural  
relations between part and whole by initiating activities with fraction bars?  



  
2. METHODOLOGY OF DIDACTICAL DESIGN RESEARCH  
Mathematics education research is sometimes dichotomised by two different aims:  
1. designing concrete (teaching-)learning arrangements for mathematics classrooms, and 
2. understanding and explaining teaching-learning processes. More and more research-
ers aim to overcome this unfruitful dichotomy and to combine empirical research and 
the design of learning arrangements in order to advance both: practical designs and the-
ory development (e.g. van den Akker et al., 2006).  
In our research group, we follow the programme of Didactical Design Research as for-
mulated by Gravemeijer and Cobb (2006) which combines the concrete design of learn-
ing arrangements with fundamental research on the initiated learning processes. By iter-
ative cycles of (re-)design, design experiment and analysis of learning processes, it fo-
cuses on both: 1. creating prototypes of learning arrangements and their underlying the-
oretical guidelines (design principles and strategies), and 2. elaborating on an empirical-
ly grounded subject-specific local instruction theory that specifies the epistemological 
structure of the particular learning content, students’ learning pathways, typical obsta-
cles in these pathways, and conjectured conditions and effects of specific elements of 
the design (Prediger & Schnell, 2013; Gravemeijer & Cobb, 2006, p. 21). For investi-
gating processes initiated within the designed learning arrangements, design experi-
ments have proven to be a fruitful method of data collection (cf. Komorek & Duit, 
2004; Gravemeijer & Cobb, 2006). We usually start by laboratory settings with 2-4 stu-
dents as this allows in-depth insights into individual, context-specific learning path-
ways, obstacles or individual prerequisites (cf. Komorek & Duit, 2004). Once the ar-
rangements have proven suitable to initiate the intended learning processes, the experi-
ments are widened to classroom settings with regular teachers and normal resources for 
investigating their robustness under varying pedagogical conditions.  
For data gathering in the topic ‘order and equivalence of fractions’, we successively 
conducted 31 design experiment series in laboratory settings (in sum n = 69 students), 
each with 2-6 sessions. Additionally, long-term classroom experiments were conducted 
with six classes (n = 123 students) and their regular teachers, encompassing about 36 
sessions for the whole fraction curriculum (on basic concepts, order and equivalence for 
5 sessions, then addition, multiplication etc.) All design experiments in laboratory set-
tings were videotaped. The data corpus includes the videos, transcripts of selected vid-
eo-sequences, teaching materials and students’ products. The data analysis of the com-
plex process data requires interpretative qualitative methods that are specified according 
to the research interest in each phase of the process (Prediger & Schnell, 2013).  
Due to space limitations, the complex, iterative design research process cannot be re-
ported here. Instead, some selected snapshots are presented that are chosen to illustrate 
three design strategies for implementing the design principle ‘focussing structural rela-
tions’. Each of the three strategies is illustrated by one selected activity and typical mo-
ments in the learning process. These snapshots intend to contribute to a local instruction 
theory for fostering all students’ mental constructions of structural relations for frac-
tions, order and equivalence.  



  
3. DESIGN STRATEGIES FOR FOCUSSING STRUCTURAL RELATIONS 
 
3.1 Constructing relevant structural relations by contexts and systematic variation 
The case of Ismet and Cavit suggests that comparing fractions might be an important 
activity for constructing relevant structures in the part-whole model. The context of 
computer interface progress bars (see Figure 1) was introduced into the material after 
analysing these initial case. In later design experiment cycles, this connection between 
progress bars and the symbolic and verbal representations proved to be useful for stu-
dents constructing the intended structural relations, because students activate everyday 
experiences and argue for example, “no, 3/5 cannot be bigger, it has less downloaded”.  
In addition to these contextual supports, we drew back on the design strategy of system-
atic variation emphasized by Duval for relating representations structurally: “It is only 
by investigating representation variations in the source register and representation varia-
tions in a target register, that students can at the same time realize what is mathematical-
ly relevant in a representation, achieve its conversion in another register and dissociate 
the represented object from the content of these representations.” (Duval 2006, p. 125). 
One example for a systematic variation activity is printed in Fig. 2. It was designed to 
support especially low-achieving students to construct the quasi-cardinal relation be-
tween the systematically varied fifths: 1/5, 2/5, 3/5, 4/5 and 5/5 (which is one aspect of 
measuring). Although this relation is immediately clear for some students, our design 
experiments have shown that the task can allow an interesting discovery for lower 
achievers and help to make clear the difference between a divided whole and its parts 
(Prediger & Wessel, 2013).   
 

More and more fifths 

 a) Now Kenan produces fifths with fraction bars. Complete his table.    
Fraction that Kenan wants to draw:        Picture:  

 1
5
 	   	   	   	   	  

 

 2
5
 	  

 

 3
5
 	  

 

 4
5
 	  

 

 5
5
 	  

 

 b) 
 
 c) 
 

Examine the table precisely and consider the following: What happens with the coloured 
part of the fraction stripe? Why does the coloured part change?  
Your research: How and why does the fraction change? Write down your findings so that 
another student can understand what is happening with it and why it changes. … 

Figure 2. Elementary task for weaker students – example for the design strategy systematic variation 



  
For example, Hadar (12 years old) writes, “When the numerator gets bigger, one gets 
more fraction.”. Asim (12 years old) explains the differences with reference to a contex-
tual situation: “Because the numerator gets always bigger, that is why Kenan gets al-
ways one [piece] more [of the chocolate bar]. And the denominators stay the same.” (ci-
tations from a case study in Prediger & Wessel, 2013).  
 
3.2 Embedding structural relations in a comprehensive visual model: Bar board 
For comparing fractions with respect to 
order and equivalence, students need to 
connect different fraction bars, e.g., not 
only fifths, but also forths, thirds and 
eighths. Whereas higher achieving stu-
dents tend to mentally construct the bars 
quite quickly, weaker students profit from 
a comprehensive visual model that helps 
them to see many bars at the same time. 
Inspired by the prototype of the “fraction 
lift” which connects some bars (Bokhove 
et al., 1996), we have developed the frac-
tion bar board as a comprehensive visual 
model for comparing fractions with re-
spect to order and equivalence. Figure 3 
sketches how to find fractions that are 
equivalent to 1/3 by vertically positioning 
the ruler. The lamination of the bar board 
guarantees its long time usability. 
The classroom design experiments have 
shown that most students quickly learn to 
use the bar board and understand the ordinal relations of fractions in the interplay of 
symbolic, verbal and graphical representation (Prediger, 2011). The bar board allows to 
embed a singular ordinal relation into a comprehensive visual model. By this, students 
achieve an overall orientation as the example of Lisa illustrates: Having worked with 
the bar board for two hours, Lisa is asked to compare 1/10 with 2/3. She immediately 
says without watching the bar board: “Imagining them, it is evident, 1/10 is so much on 
the left.” (cited from a classroom video). 
In the next step of the curriculum, the bar board serves as starting point for the process 
of progressive schematization (Treffers, 1987) from visually searching equivalent frac-
tions to extending fractions by calculating: Paul explains “If you go from 2/6 to the 12-
bar, each sixth transforms into two twelths, thus the denominator must be multiplied by 
two. The coloured pieces also transform from sixths into twelfths by one into two, so 
the numerator must also be multiplied by two.” (cited from a classroom video).  

Figure 3. Extract of the fraction bar board 



  
3.3 Internalizing structural relations by mental practices 
Unlike Lisa and Paul, who quickly internalized the relational structures inherent in the 
bar board, other students need more help to explicitly focus the structural relations be-
tween the bars. This is illustrated by the case of Anna and Jasmin, both 11 years old (in 
Prediger, 2011). Both girls worked with the bar board, but treated it only empirically, 
which became apparent when they searched for fractions being equivalent to 3/4:  
230  
 
 
232 

Anna 9/12 here, isn’t it? (marks a sign on the 12-bar and draws a vertical line)  
Well, yes, that is... is 6/8, but..... it works, it seems to work! (controls her bar board 
with the ruler again, during 12 seconds)  
No, it is only wrong by one millimeter. 

   

With purely empirical methods of measuring in the bar board, Anna could not convince 
herself whether 9/12 is equivalent to 6/8 and 3/4 or not. Whereas other children in this 
situation started to argue with structural relations (like Paul above), both girls only re-
ferred to the bar board as an empirical instrument (Steinbring, 2005). Even later, when 
they found a rule in the number patterns (multiply numerator and denominator by 2 or 
by 5) they could not explain the found regularity:  
295  A Yes, denominator and numerator must always be the same. That means here, 3/5 is 

the double of 6/10. (8 seconds break) 
...   (Interviewer asks for an explanation) 
303  A That’s just how it is. Like: why is a banana called a banana (both girls laugh) 
   
Thus, Anna’s and Jasmin’s process of progressive schematization was only partly suc-
cessful due to a lack of conceptual understanding why their rule “take the double for de-
nominator and numerator” applied for all fraction bars. As a consequence of these em-
pirical findings, the redesign searched for a strategy that makes Paul’s insight into struc-
tural relations more explicit for all children. For this, we developed mental practice ac-
tivities (Weber, 2011) for internalizing the structure of the bar board (see Figure 4).  

The bar board in your head  

 You can also find equivalent fractions, if you only 
imagine the bar board in your head. Try it! 

 

a) Imagine how to mark 2/3 on the 3 bar.  
Go from the 3 bar to the 6 bar. Where is 2/3 here?  
How many pieces does the 6 bar have?  
How many of them are coloured?  

b) Pose yourself different similar tasks. ... 
c) How many 25ths are 3/5?  

Explain, how you find the result even if you 
cannot imagine the bars.   

Figure 4. Mental practice for internalizing relational structures of equivalence 

 

 



  

4. EVALUATION 
Whereas laboratory design experiments and in-depth analyses offer good opportunities 
to understand the situational effects of the design (see preceding section), a quantitative 
evaluation of learning effects can better contribute to evaluate the long-term efficacy of 
the curriculum. That is why we conducted a first, rough assessment of effects in long-
term classroom design experiments (2008-2010) with a standardized fraction test (see 
Table 1 for some items). We compared the performances of students in five classes 
(n=108) that have worked with our fraction curriculum in grades 5 to 7, with those of 
five neighbour classes (n=104) from the same schools that have used the usual textbook 
curriculum. This pragmatic quasi-experimental sampling by neighbour classes suggests 
the approximate comparability of treatment and control group with respect to general 
performances and socio-economic background (as these criteria were applied for com-
posing classes in grade 5).  
For comparing the long-term efficacy of two different fraction curricula, we measured 
students’ fraction performance ten months after finalizing the curriculum with a stand-
ardized fraction test being adapted from Bruin-Muurling (2010) (more details in Predi-
ger & Wessel, 2013). The test included 41 items which tried to limit specific training 
effects for the intervention group by a wide coverage of different contents: e.g., identify 
and draw fractions in part-whole and part-group models and on the number-line, order 
fractions and explain order in contextual or graphical representations, find equivalent 
fractions and explain, part of part-tasks, subtractions, operators.  
Table 1 shows the overall results and those items on order and equivalence with most 
significant intergroup differences. The treatment group was significantly better (m = 
23.49) than the control group (m = 19.52) in the whole fraction test, this difference in-
creases enormously for the items on order and equivalence. Remarkable is also the dif-
ference in standard deviations, we interpret the higher homogeneity of the treatment 
group as a success in giving also weaker students an access to conceptual understand-
ing.  

Table 1. Comparing performances of treatment / control group for overall results and selected items 

 Treatment Group Control Group Significance  
Sample size n   = 108 n = 104  
Mean of overall scores m  = 23.49 m = 19.52 T = 4.580    α < 0,001*** 
Standard deviation  SD = 5.389 SD = 7.146 F = 4.362    α  < .05 ** 
Items with significant differences  Frequency of complete solutions  
Item 1a. Find fraction 3/4 from picture 99.1 % 86.5 %  
Item 5b. Compare 2/10 and 4/6 86.1 % 72.1 %  
Item 5d. Explain why 2/3 < 3/4  45.4 % 28.8 %  
Item 5f. Explain why  3/9 = 5/15 25.0 %   3.8 %  
Item 6a. Read on the number line 2/8 39.8 % 20.2 %  
 



  
5.  CONCLUSION AND OUTLOOK 
A design research project always aims at research results and design results: The central 
finding of the empirical research on students learning processes is that focussing on 
structural relations is an important condition for developing conceptual understanding of 
order and equivalence of fractions while relating different representations. Especially 
weaker students do not develop this focus automatically, but if they are fostered by suit-
able activities, they are able to.  
Central results of the iterated design have been presented in three design strategies for 
implementing the design principle ‘focussing structural relations’, namely  
1. constructing relevant structural relations by contexts and systematic variation, 
2. embedding structural relations in a comprehensive visual model, 
3. internalizing structural relations by mental practice. 
The empirical snapshots (that could of course only show a minimal part of the large data 
set) illustrated how these design strategies can initiate learning processes. The qualita-
tive insights into situational effects of the design were triangulated by a first rough eval-
uation of efficacy in a posttest-control-group design. The results show that the students 
who learned with our curriculum learned significantly more than the control group clas-
ses. However, this first rough evaluation has two important methodological limits: (1) 
the lack of fraction performance control in a pre-test in 2008 and (2) only partial control 
on the applied pedagogy in the long-term intervention in regular classrooms. Because of 
these methodological limits, we have started another evaluation study from 2012-2014. 
As the curriculum has further been developed, we hope to receive more robust results 
and perhaps even higher learning effects.  
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