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The study presented in this paper offers a reference framework for characterizing 

primary school teachers’ mathematical knowledge of the standard algorithms of the 

four basic arithmetic operations. The framework was first devised theoretically, from 

mathematical analysis of the algorithms and from past research on knowledge for 

teaching arithmetic operations with rational numbers. It was then applied to 

designing tasks for charactering and deepening the teachers' conceptual 

understanding of the algorithms. The paper contains examples of tasks related to the 

knowledge of mathematical principles underlying the algorithms, which were tested 

with a group of 46 primary school mathematics teachers.  
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INTRODUCTION 

The four standard algorithms of the four basic arithmetic operations is one of the 

main topics currently taught in primary school
1
. Much time is devoted to teaching 

this topic, but according to many studies, the pupils have difficulty in performing and 

understanding it (Fuson, 1992; Fuson et al., 1997; Kilpatrick et al., 2001). There is 

serious criticism of the way this subject is taught (e.g., Lee, 2007; Ma, 1999; 

McIntosh, 1998). Many researchers argue that it is taught in a rote manner that does 

not encourage conceptual understanding. In order to understand the roots of this 

problem in depth, several studies focusing on the teachers' knowledge of this subject 

were conducted (e.g., Hill & Ball, 2004; Hill et al., 2008; Kilpatrick, Swafford & 

Findell, 2001; Ma, 1999; Tchoshanov, 2011).   

With few exceptions (e.g., Peled & Zaslavsky, 2008), the recent studies focus on 

particular algorithms. A framework for characterizing the knowledge for teaching the 

four standard algorithms as a holistic topic is still missing. The need for such a 
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 This article deals with the four standard algorithms being taught in Israel. These algorithms may have slightly different 

appearances in different countries.  

 



  

framework manifests itself due to the broadly recognized importance of emphasizing 

the connectedness of mathematics (e.g., NCTM, 2000). In addition, and in line with 

research on other mathematical topics, such a framework is needed for systematic 

design of mathematical tasks with the potential to characterize and promote the 

teachers' knowledge of the subject. The present study aims at fulfilling this gap
2
.  

Specifically, the goal of the study is to identify, first theoretically, the components of 

mathematical knowledge for teaching the standard algorithms of the four basic 

arithmetic operations, and then to empirically examine the feasibility of the 

framework by applying it to the design of tasks having the potential to capture 

variations in the teachers' knowledge.   

In the next section we present and theoretically justify the framework. This is 

followed by examples of tasks related to one of the framework's components, the 

knowledge of mathematical principles underlying the algorithms. The article is 

concluded by remarks on applicability of the framework for research and practice.  

REFERENCE FRAMEWORK 

The framework presented in Table 1 is devised based on juxtaposition of two 

sources: (1) past studies on the knowledge for teaching the basic arithmetic 

operations with rational numbers, and (2) analysis of the algorithms in terms of the 

underlying mathematical principles.  

 Component Operative criteria for component examination 

PK Procedural Knowledge 1. Demonstrated knowledge of the algorithms' steps  

2. Performing correct computations   

KP Knowledge of 

mathematical Principles 

underlying each 

algorithm: place-value, 

number regrouping and 

distributive law   

1. Recognizing mathematical principles, which are 

violated in students' incorrect performance  

2. Explaining the stages of the algorithms using 

appropriate mathematical principles 

3. Recognizing mathematical principles underlying 

different representation of the algorithms 

KS Knowledge of Similarity 

between different 

algorithms based on the 

common underlying 

principles 

1. Recognizing common principles underlying  different 

algorithms 

2. Classification mistakes in the use of different 

algorithms by pointing out  the common mathematical 

principles violated 

KR Knowledge of different 

Representations  of each 

algorithm and 

connections between 

them 

"Translating" standard, vertical, algorithms to horizontal 

representations 

                                           

2
 The paper is based on the PhD research of the first-named author conducted in the Technion under the supervision of 

the second-named author, Prof. Orit Zaslavsky and Dr. Irit Peled. 



  

Table 1: Reference framework for teaching the four elementary algorithms 

Noticeably, the first component corresponds to the notion of procedural 

understanding, and the next three – to conceptual understanding, as defined by 

Skemp (1987).     

Procedural Knowledge (PK) refers to one's ability to accurately perform the 

algorithms. This component is not unique for teachers' knowledge. Ball, Hill and 

Bass (2005) claim that being able to perform the algorithms correctly is essential for 

teaching, but also insufficient.      

Knowledge of mathematical Principles underlying each algorithm (KP) component 

is included in the framework because, mathematically speaking, the algorithms work 

based on certain mathematical laws, and it is reasonable to assume that knowledge of 

these laws is an important part of conceptual understanding the topic. Peled and 

Zaslavsky (2008) classified this type of knowledge as "local connections between 

procedures and conceptual knowledge" (p. 28). The principles for the framework 

were chosen as follows.  

First, many researchers assert the role of the place value principle in the addition and 

subtraction algorithms (Ball, Hill & Bass, 2005; Kilpatrick, Swafford & Findell, 

2001; Fuson, 1992; Ma, 1999; Thanheiser, 2010); some mention the principle as 

underlying also the multiplication (Ma, 1999; Kilpatrick, Swafford & Findell, 2001) 

and the division (Kilpatrick, Swafford & Findell, 2001) algorithms. Second, several 

researchers point out that the number regrouping principle is reflected in addition 

and subtraction algorithms (Kilpatrick, Swafford & Findell, 2001; Fuson, 1992; Ma, 

1999), and it is possible to show that this principle is also involved in the 

multiplication and division algorithms. Third, Ma (1999) recognizes the distributive 

law as underlying the multiplication algorithm, and it is not difficult to see that it 

also underlies the division algorithm. In sum, the first two principles underlie all the 

four algorithms, and the third one – the multiplication and division algorithms.  

Knowledge of Similarity (KS) between different algorithms based on the common 

underlying principles was considered by Peled and Zaslavsky (2008) as a kind of 

meta-knowledge "about a procedure which includes global aspects underlying a 

specific procedure or common to a number of procedures" (p. 31). They explored the 

iterative structure of the standard algorithms as an example of such meta-knowledge 

and argued that it may emerge in learners based on noticing the iterative structure of 

each algorithm.  

In the proposed framework, we choose to focus on the similarity between the 

algorithms at the level of the above three mathematical principles. Consequently, 

there is a sort of hierarchy between the KP and KS components: the KP component is 

necessary (though not sufficient) for KS.  

Our focus on the mathematical principles in the KS component is based on the two-

fold argument, as follows. On one hand, a person who studied each algorithm 



  

separately and observed that a particular principle repeatedly appears, may use this 

observation as a semantic tool for expressing in-depth similarity between the 

algorithms (cf. Peled & Zaslavsky, 2008, for a compatible argument). On the other 

hand, a person who learned that the same principle underlies several algorithms may 

use this knowledge in order to unpack how the principle works in each algorithm.  

Knowledge of different Representations (KR) of each algorithm and connections 

between them component is included in the framework because many researchers 

accent the importance of knowledge of different  representations and models of the 

subject taught for its conceptual understanding (e.g., Ball, Hill & Bass, 2005; Davis 

& Simmt, 2006; Hiebert & Carpenter, 1992; Leikin & Levav-Waynberg, 2007; Ma, 

1999). Among various representations and models of the four standard algorithms, 

we choose to focus on translating from the standard, vertical, representation of the 

algorithms to their horizontal representations. This is because for all four algorithms 

the translation process is rich with the opportunities to unpack the procedures' steps 

and reveal how the aforementioned mathematical principles work. 

Each knowledge component may be manifested at different levels of depth. The 

operational criteria for identifying the teachers' knowledge on a conceptual level are 

presented in Table 1. A person may also possess only rote-level knowledge of the 

algorithms. In terms of our framework, the rote level of knowledge is manifested 

when a person, who was encouraged to explicitly use his or her knowledge of the 

underlying mathematical principles, exposed only the knowledge of the technical-

computational aspects in discourse or performance. These two levels of knowledge 

are exemplified in the next section. 

CHARACTERIZING THE COMPONENTS OF KNOWLEDGE BY MEANS 

OF TASKS  

In this section we show how the framework can be applied to the design of tasks 

having the potential to reveal one's level of knowledge of the algorithms. Due to 

space constraints, we decided to focus only on the KP component. Three tasks that 

correspond to three operational criteria characterizing the KP component of 

knowledge are presented below. The tasks were tested in five 90-minute professional 

development workshops with two groups of elementary school teachers.  Overall, 46 

teachers participated in 10 workshops, which were conducted by the first-named 

author in the framework of a one-year professional development course. The teacher-

participants possessed at least B.Ed. degree, had already taught mathematics (among 

other subjects) in elementary school and wished to be certified as elementary school 

mathematics teachers.  

The principles underlying the four algorithms were discussed with the teachers prior 

to exposing them to the tasks. The teachers worked on Task 1 and Task 3 in groups 

of two to four participants; Task 2 was given for individual work. The performance 

of each group on each task was audio-taped and transcribed; all the written materials 



  

were collected. Additional insight on teachers’ work on the tasks was received 

during individual interviews conducted after the end of the workshop’s part dealing 

with the standard algorithms. The two answers accompanying Task 1 and Task 2 

presented below are representative of the edges of the spectrum of the answers: the 

first points to the rote level and the second to the conceptual level of knowledge. 

Two answers related to Task 3 exemplify different degrees of conceptual-level 

knowledge. The examples were chosen in order to demonstrate the range of 

variations in the teachers’ knowledge, which can be captured by the framework.   

Task 1: Mistaken computations  

The task corresponds to the first operational criteria for the KP component (see Table 

1). The teachers were given a series of computations by imaginary pupils containing 

various violations of the place-value and regrouping principles in the four 

algorithms
3
. Four items presented in Figure 1 deal with violations of the place-value 

principle. For each computation, the teachers were required: (1) to explain the 

mistake, (2) suggest its possible reason(s), and (3) offer a suitable method to 

pedagogically treat it. They were asked first to discuss the above three requests, and 

then to put their agreed responses in writing.  

Note that the teachers were not instructed to necessarily use the names of the 

principles in their written responses, though the principles were emphasized at the 

beginning of the workshop. Thus, a variation inherited in the task was related to the 

teachers' choice of whether or not to use the (conceptual) language of the 

mathematical principles or to use rote language.       

 

 

 

 

Fig. 1: Examples of mistaken computations from Task 1 

One group of teachers responded, in writing, to the multiplication item in Figure 1 as 

follows:  

Description of the mistake: The student didn’t write the numbers at the right place.   

Possible reasons for the mistake: The student forgot to move the numbers (the partial 

products) to left side. 

Possible method to treat the mistake: To remind the technique of the multiplication 

algorithm. 

                                           

3
 Some computations were adopted from Zaslavsky (2003) and the others were offered by the first-named author based 

on mathematical analysis of the algorithms 
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Noticeably, the teachers choose not to mention the place-value principle in their 

response and considered only the technical aspect. They did the same with the rest of 

the items. Moreover, the principles were not mentioned also in the audio-taped 

discussion. Thus, it can be suggested that the mistaken computations were treated by 

the teachers in a rote manner. 

Another group of teachers responded to the task as follows:  

Description of the mistake: The student doesn’t understand the meaning of the number’s 

place according the place-value principle. 

Possible reason for the mistake: The student doesn’t understand the place-value of the 

number 1065 (tens) and 639 (hundreds). The student doesn’t understand the 

importance of adding the appropriate units at the stage of addition of the 

algorithm. 

Possible method to treat the mistake: To ask the student to estimate the product quantity: 

60000300200  .  Is it possible that 2556354213  ? To explain the student that 

213 multiplied by 5 tens is 1056 tens, so we must to write the product at the place 

of tens, so at the next stage of the algorithm we can add appropriate units. 

In this response we can see explicit reference to the place value principle. In 

“possible methods to treat the mistake” the teachers suggest a series of exercises 

aimed at raising the pupils' awareness of the place value principle indirectly, by 

means of estimating the results. Such an answer can be taken as a manifestation of 

the teachers' conceptual-level knowledge of KP.  

Task 2: Unpacking the algorithms 

The task corresponds to the second operational criteria for the KP component (see 

Table 1) and concerned the multiplication and division algorithms. As to 

multiplication, the teachers were offered the following scenario: 

Imagine that you are sitting in the teachers’ room. One of your colleagues asks you to 

explain as specifically as you can each step of the standard multiplication algorithm while 

solving an exercise "435 times 28." The colleague specifically asks you to point out the 

mathematical principles underlying the algorithm as she is going to teach the algorithm 

next week and wants to be sure that she knows not only the technical part. 

The task was to individually write the explanation asked for by the colleague. The 

contrast between the responses of Teacher A and Teacher B, in terms of rote and 

conceptual levels of the KP component is apparent below. 
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Fig.2: A computation from Task 2   

Teacher A (with the reference to Fig. 2):  

8 multiplying by 435       3480. We write the result right beneath. 

2 multiplying by 435        870. We move the result one place to the left (it’s possible to 

write zero as a placeholder). Finally we adding the results and get 12180.  

Teacher B (with reference to Fig. 2) 

First of all, you have to explain that we regroup 28 as 20 and 8 and multiply each part 

separately:  )820(435  . We then have to remind the distributive law in order to explain 

the multiplication: )820(435   

8 units multiplied by 435 is 3480 units, and 2 tens multiplied by 435 are 870 tens. So we 

must write the results in the appropriate places. It’s the key element of the explanation. 

Only after understanding this properly you can continue. Finally, you have to add the 

partial products and pay attention to the units.  

In sum, the rote and conceptual level responses were observed at both Task 1 and 

Task 2. Note however, the following differences in task design: Task 1 addresses 

imaginary students and Task 2 – an imaginary colleague; Task 1 does not include 

explicit instruction to mention the mathematical principles underlying the algorithms 

and Task 2 does. Consequently, one can reasonably suggest the following. Those 

teachers who responded to at least one of the tasks in a conceptual manner may be 

characterized as those who possess conceptual-level knowledge of the KP 

component. Those teachers who responded to both tasks in rote manner, probably not 

only decided not to mention the principles in the given context, but indeed do not 

possess conceptual-level knowledge.         

Task 3: "Translating" the algorithms into horizontal representation 

The task corresponded to the third operational criteria for the KP component (see 

Table 1) and included items related to the subtraction, multiplication and division 

algorithms; each algorithm was dealt with in one 90-minute workshop. The task was 

to “translate” all the stages of the computation presented in the standard, vertical, 

form, into a horizontal row of transformations and justify the validity of each 

equality sign in the row by the aforementioned mathematical principles.  

The division algorithm was reserved for the last workshop, so the teachers already 

knew how to deal with the task in the contexts of the subtraction and multiplication 

algorithms. Nevertheless, 7 out of 10 groups appeared to be unable to translate the 

division presented in Fig. 3 and returned empty sheets. Apparently, this occurred 

because the task was more demanding that the previous ones: only those who possess 

conceptual knowledge of the division algorithm could write something in response. 

Two examples below suggest that groups who did respond to the task possessed the 

required conceptual knowledge, although to different degrees.       



  

 

 

 

Fig.3: A computation from Task 3  

One group of the teachers responded to the task as follows:   

 

 

 

2473:12=2400:12+72:12+1:12=200+6+1:12 

As can be seen, the teachers translated the computation using two row 

transformations and used their own expressions to explain them rather than the 

names of the aforementioned principles. 

The response of another group follows.  

 

 

 

2473:12= (2400+72+1):12=2400:12+72:12+1:12=200+6+1/12=206+1/12 

This group translated the vertical computation using four row transformations and 

explained the first two in terms of the intended mathematical principles. 

Based on the above written responses, follow-up interviews and a whole-group 

discussion, we know that the first group chose to translate the vertical computation 

into a horizontal form straightforwardly, by focusing on particular numbers in the 

vertical algorithm (i.e., 24, 72 and 1). Then when the teachers tried to explain each 

horizontal transformation as requested in the task, they observed that the names of 

the principles did not fit and used their own expressions. The second group began 

from recalling the relevant principles and decided how many and which 

transformation to write so they would fit the names of the principles. Consequently, 

we deem that the response of the second group reflects a higher degree of conceptual 

knowledge of the division algorithm, in terms of the offered framework, than that of 

the first one. 

SUMMARY AND CONTRIBUTION 

Ball, Hill and Bass (2005) point out the teachers' ability to unpack a mathematical 

subject into related sub-subjects as an important component of mathematics 

knowledge for teaching. In the context of the standard algorithms of the four basic 

arithmetic operations, such an unpacking still needs operational conceptualizing. A 
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reference framework presented in this article offers one way of so doing. 

Specifically, it puts forward the mathematical principles underlying the algorithms as 

an overarching semantic/mathematical tool for identifying the components of 

knowledge needed for teaching the algorithms. Consequently, the study continues 

and advances the research venue started in the studies of Ball, Hill and Bass (2005);  

Ma (1999) and Peled and Zaslavsky (2008).    

Furthermore, the framework includes operational criteria for characterizing the 

knowledge components at different levels, up to the conceptual level of teaching the 

algorithms, i.e., teaching with the potential to expose for learners deep mathematical 

similarities between the algorithms and the connections between their different 

representations. Thus, the framework addresses the call formulated in Davis and 

Simmt (2006) and Peled and Zaslavsky (2008). It has been demonstrated that the 

criteria, in turn, can serve for designing tasks for mathematics teachers' professional 

development. Three examples of tasks provided in this article have (hopefully) 

demonstrated the sensitivity of the framework to variations in the teachers' 

knowledge. 
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