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An iterative unpacking strategy consists of a sequence of empirically-based 

theoretical developments so that at each step of theorizing one theory serves as an 

overarching conceptual framework, in which another theory, either existing or 

emerging, is embedded in order to elaborate on the chosen element(s) of the 

overarching theory. The strategy is presented in this paper by means of reflections 

on how it was used in several empirical studies and by means of a non-example. The 

article concludes with a discussion of affordances and limitations of the strategy.   

INTRODUCTION 

A long-term program of our research group focuses on identifying and characterizing 

learning that possibly occurs when individuals or groups of individuals are engaged 

in problem solving and problem posing. In several of our studies, a typical data set 

consists of a series of recorded observations of how a learner or a small group of 

learners approaches an insight problem or tries to openly generalize a known 

theorem or pose a mathematical problem, which would be interesting to solve also to 

the posers. Many events, interactions and developments occur in such situations, so 

we, as many other researcher groups, repeatedly face the following research choices:  

- Which of the observed developments are worthwhile enough in order to call 

them "learning"?  

- The learners' successes and failures with problem-solving and problem-posing 

tasks are functions of many conditions and variables, some of which are out of 

our reach. So, which variables and conditions should become a focus of our 

attention, if we wish not only to describe the learners' actions and "learning," 

but also to explain what stipulated them? 

These questions presume different theoretically-laden answers in different 

circumstances. Though individual studies in our group heavily rely on selected 

theories, their elements or their combinations, we are not adhered, as a group, to a 

particular theory or conceptual framework
1
. Thus, the need to develop certain 

strategies of calling into play several theories in one study as well as in a sequence of 

studies emerged for us. The goal of this paper is to introduce one of such strategies, 

which I would like to term networking by iterative unpacking. 

ITERATIVE UNPACKING STRATEGY: AN INTRODUCTORY EXAMPLE        

Let me introduce an iterative unpacking strategy by an example taken from a recent 

article by Simon et al. (2010). Simon and his colleagues presented a novel approach 

to studying learning through mathematical activities. The approach was developed 



  

for capturing subtle processes of transition the learners come through when 

progressing from one conceptual step of knowledge construction to a subsequent 

one. The scholars contrasted their approach with an approach developed by 

Thompson (1994) and Steffe (2003). That approach includes identifying sequences 

of developmental steps in students' mathematical actions and analysing them, in 

particular, in Piagetian terms of perturbation, accommodation and reflective 

abstraction. To further situate their approach in the literature, Simon et al. asserted:  

Our work also builds on the work of Hershkowitz, Schwartz, and Dreyfus (2001) who 

took on the challenge of explicating the formation of abstractions. Toward this end they 

described three 'epistemic actions' in the process of abstraction: 'construction, recognition, 

and building with.' They emphasize that construction is the key part of the process. Our 

work can be seen as attempting to unpack construction [italics is added] (p. 80) 

Notably, Simon et al. refer to the Hershkowitz, Schwartz and Dreyfus's (2001) work 

in a dual way. On one hand, they refer to it as a theory, which unpacks a particular 

element of a previously developed theory. To this end and consistently with the 

Bikner-Ahsbahs and Prediger's (2006) terminology, the former theory can be seen as 

a foreground one, and the latter – as a background one. On the other hand, they use 

the Hershkowitz et al.'s (2001) work as a background theory or as an overarching 

framework, in which their own foreground theory is embedded. Simon et al. 

specifically point out which theoretical construct of the overarching framework they 

are going to unpack. They then perform the unpacking by developing an elaborated 

kit of tools for analysing the process of construction/transition in terms of seeing 

commonalities between the tasks in a sequence of tasks and anticipating solutions.   

My point is that Simon et al. utilized two networking strategies, one of which had 

been explicated in the literature (e.g., Bikner-Ahsbahs & Prediger, 2006; Prediger, 

Bikner-Ahsbahs & Arzarello, 2008) and another was not. First, they utilized a 

comparison strategy by pointing out the differences between their approach and the 

Piagetian-oriented approach developed by Steffe and Thompson. The main 

difference was that Simon et al. suggested exploring learning without necessarily 

focusing on perturbation. Second, though Simon et al. did not use the “construction, 

recognition, and building with” language in their analysis, they considered it as an 

overarching conceptual framework for their own theorizing. To this end their 

contribution is in unpacking one of the key constructs of the Hershkovitz et al.'s 

(2001) theory. Therefore – unpacking strategy. Furthermore, the whole process of 

theorizing presented in the Simon et al.'s (2010) article includes the following chain 

of iterations: (1) from focusing on perturbation, accommodation and reflective 

abstraction to unpacking the formation of abstraction in terms of construction, 

recognition, and building with, and then (2) to unpacking construction in terms of 

seeing commonalities between the tasks and anticipating the solutions. Therefore – 

iterative unpacking strategy.  



  

In sum, iterative unpacking strategy consists of a sequence of empirically-based 

theoretical developments so that at each step of theorizing one theory serves as an 

overarching conceptual framework, in which another theory, either existing or 

emerging, is embedded in order to elaborate on the chosen elements(s) of the 

overarching theory. Note that different ways to embed an additional theory into an 

overarching theory may exist. For example, the way of unpacking "construction" 

offered by Kidron, Bikner-Ahsbahs and Dreyfus (2010) is very different from the 

way offered by Simon et al. (2010).  It is also of note that, though an overarching 

theory and an embedded theory are, in a way, complementary, iterative unpacking 

does not necessarily imply that all the constructs of the overarching theory are to be 

preserved. In other words, the use of iterative unpacking strategy may influence also 

an overarching theoretical framework, as follows: unpacking a particular aspect of a 

theory may shed light on the role of the rest of its aspects. For instance, the role of 

perturbation – one of the main concepts of the highest-level overarching theory in 

the above example – was reconsidered in the second iteration.  

ADDITIONAL EXAMPLES           

In this section an iterative unpacking strategy is illustrated by reflective accounts of 

two sequences of studies, in which I am involved during the last years. The first 

example concerns problem solving, and the second one – problem posing.   

Example 1: iterative unpacking of problem solving 

Problem solving as a research field is being attracting keen attention of the 

mathematics education community for more than 50 years. Foreground models of 

problem-solving are originated in seminal work of Polya (1945/1973) and developed 

in the eighties (e.g., Schoenfeld, 1985). Generally speaking, the models attempt to 

elaborate on how learners solve mathematical problems in terms of phases and 

attributes. For instance, a model offered by Carlson and Bloom (2005) postulates 

four problem-solving phases: orientation, planning, executing and checking, and 

operates with five problem-solving attributes: conceptual knowledge, heuristic 

knowledge, metacognition, control and affect. 

First iteration 

A heuristic knowledge component was chosen to be unpacked in the study reported 

in Koichu, Berman and Moore (2007). The study included a five-month teaching 

experiment in two Israeli 8
th

 grade classes. The aim of the experiment was to test a 

particular approach to developing heuristic literacy in students. By heuristic literacy 

we meant an individual’s capacity to use the shared names of heuristic strategies in 

classroom discourse and to approach (not necessarily to solve!) mathematical 

problems by using a variety of heuristics. Changes in students' heuristic literacy were 

explored in three rounds of thinking-aloud interviews conducted at the beginning, in 

the middle and at the end of the experiment.  The interviews were based on so-called 

seemingly familiar problems, that is, problems that looked similar to the problems 



  

previously offered in the students' mathematics classrooms, whose solutions, 

however, were essentially different. The following problem is an example: 

The sum of the digits of a two-digit number is 14. If you add 46 to this number the 

product of digits of the new number will be 6. Find the two-digit number.  

Indeed, at first glance the problem has a solution by means of a system of 

equations, as many similarly looking problems approached by the students in the 

classroom have had. However, composing a system of equations appears 

ineffective at a second glance. Such problems were used as opportunities to elicit 

as many heuristics as possible from the students’ thinking-aloud speech without 

discouraging the students from the beginning by facing unfamiliar problems. The 

interview protocols were segmented into content units and coded in terms of 10 

pre-defined heuristic processes:  

(1) Planning, including (1a) Thinking forward, (1b) Thinking from the end to the 

beginning and (1c) Arguing by contradiction. (2) Self-evaluation, including (2a) Local 

self-evaluation and (2b) Thinking backward. (3) Activating a previous experience, 

including (3a) Recalling related problems and (3b) Recalling related theorems. (4) 

Selecting problem representation, including (4a) Denoting and labelling and (4b) 

Drawing a picture. (5) Exploring particular cases, including (5a) Examining extreme or 

boundary values and (5b) Partial induction. (6) Introducing an auxiliary element. (7) 

Exploring a particular datum. (8) Finding what is easy to find. (9) Exploration of 

symmetry. (10) Generalization. 

Success or failure in solving the interview problem was obviously dependant on 

circumstances under which the problems were dealt with as well as the whole bunch 

of problem-solving attributes. Consequently, the rates of success were considered 

irrelevant to unpacking a heuristic component of problem solving. Instead, we 

introduced a notion of relative heuristic richness of solutions. We used the following 

comparison criterion: One solution was called heuristically richer than another if the 

number of different heuristic processes indicated in the first solution was greater by 

three or more than in the second solution. Given that 10 different heuristics were 

considered in our study, we considered the criterion “…three or more” very 

demanding, and, in turn, sufficiently robust. This criterion was applied to each 

student individually, for comparison of her or his solutions by pairs of corresponding 

problems given in the first, second and third interviews. We then developed an 

integrative measure of individual heuristic literacy development based on the number 

of the pairs of the corresponding problems, in which a solution to the second 

problem was heuristically richer than a solution to the first one. 

The measure helped us to adequately account for some of the learning effects of the 

teaching experiment. One of the central findings was that positive changes in 

heuristic literacy occurred in most of the students, yet they were unequally 

distributed among the students, who were defined as "stronger" and "weaker" with 

respect to their achievements in SAT-M (Scholastic Aptitude Test - Mathematics) 



  

administered at the beginning of the experiment. In particular, those students, who 

were "weaker" at the beginning of the experiment, demonstrated more significant 

heuristic literacy development than their "stronger" peers. We explained this result 

by suggesting that the heuristic content of the teaching experiment was more novel 

and useful for the "weaker" students, whereas the "stronger" students might have 

possessed the strategies prior to the experiment. The novelty of this result was in the 

exposure of the role and the learnability of heuristic component of mathematical 

problem solving, which was identified in (relative) isolation from the rest of 

problem-solving components. In addition, this result enabled us to formulate some 

pedagogical implications.  

Towards the second iteration 

To recap, the study quoted above attempted to unpack the heuristic component of 

problem solving in terms of selected heuristic processes. Heuristic literacy was 

chosen as an object of learning. However, though the developed measure of heuristic 

literacy worked well for describing some of the learning effects of the experiment, it 

was too simplistic in order to capture how particular heuristics are called into play. 

This was particularly evident when we looked at the students' solutions containing 

comparable numbers of heuristics, which however differed in some other respects, 

such as the appearance of repetitions and cycles in the students' reasoning and the 

nature of their decisions when facing dead ends. Thus, we feel the need for further 

unpacking. Specifically, we are interested in unpacking a "heuristic richness" notion. 

To achieve this goal, we now experiment with three interrelated ideas.  

Ovadia (Ph.D. in progress) studies how particular heuristics come into play 

depending on how the students perceive similarities and differences between 

problems that were discussed in a classroom and new ones. In particular, her study 

focuses on the ways by which the students learn to make connections between 

known and new mathematical problems at the level of common heuristics needed for 

solving these problems. To this end her study can also be seen as an attempt to 

unpack the process of seeing commonalities between the tasks pointed out by Simon 

et al. (2010) as one of the process underlying the process of construction.  

Another study (Koichu, 2010) was conducted in order to better understand why those 

students who possess all necessary strategic and conceptual knowledge for solving 

given problems sometimes miss within-the-reach solutions. In this work, I consider 

alternative explanations of this well-documented phenomenon in terms of three 

theories developed within mathematics education research, point out the limitations 

of these explanations with respect to a particular data set and offer an explanation in 

terms of the Principle of Intellectual Parsimony. The Principle states that when 

solving a problem, one intends not to make more intellectual effort than the 

minimum needed. In other words, one makes more effort only when forced to do so 

by the evidence that the problem cannot be solved with less effort. The explanation is 

built on that efforts in problem solving can be of a different nature. 



  

Finally, my interest in heuristic component of mathematical problem solving and 

Leron's interest in proving and applying cognitive science theories to mathematics 

education have fruitfully intersected in our common work "Proving as problem 

solving: the role of cognitive decoupling" (Koichu & Leron, in prep.). In this work, 

we re-analyse two thinking-aloud protocols from Koichu et al. (2007) study in terms 

of a conceptual framework representing the increasing importance attached to 

working memory capacity by researchers in cognitive psychology working on 

problem solving and decision making. The key notion of the framework is that of 

cognitive decoupling, i.e., human ability to form more than one mental model of the 

problem situation and attempt to hold them at the same time in working memory, all 

the time resisting the tendency for the models to be mixed and confused. Unpacking 

the heuristic component of problem solving in terms of cognitive decoupling seems 

us instrumental for better understanding the appearance of cycles in repeated 

problem-solving attempts and for the use of multiple representations.  

Example 2: iterative unpacking of problem posing 

Koichu and Kontorovich (2012) conducted a study, in which a group of pre-service 

mathematics teachers was asked to pose interesting mathematical problems based on 

a particularly rich problem-posing situation, the Billiard Task. Our goal was to 

identify those traits of problem-posing processes, which are involved in the posers' 

attempts to formulate interesting problems.  

A coherent conceptual framework which would be sensitive to the subtleness of the 

problem-posing processes and simultaneously applicable to a broad range of 

problem-posing tasks is not yet established. However, the literature offers several 

conceptualizations of problem posing, which could be utilized in our study. We 

decided to adopt in our study a definition of problem posing by Stoyanova and 

Ellerton (1996) as an overarching conceptual framework. The definition states that 

problem posing is “the process by which, on the basis of mathematical experience, 

students construct personal interpretations of concrete situations and formulate them as 

meaningful mathematical problems” (p. 518). This definition required a great deal of 

unpacking, and, as will be evident shortly, we saw this fact as an opportunity rather 

than as a limitation. I present here our attempts to unpack two key components of the 

definition: the process of constructing personal interpretations of a given situation 

and the notion of a mathematically meaningful problem.  

Iterative unpacking of the process of problem posing 

Problem posing is a natural companion of problem solving, so we decided to unpack 

it in terms of attributes and stages, as it had been fruitfully done regarding problem 

solving. In line with our earlier research (Kontorovich & Koichu, 2009; Kontorovich 

et al., 2012), we focused on mathematical knowledge base, problem-posing 

strategies and individual considerations of aptness as problem-posing attributes.  



  

Mathematical knowledge base for posing problems includes the knowledge of 

mathematical definitions, facts, routine problem-solving procedures and relevant 

competencies of mathematical discourse and writing. In addition, it requires 

knowledge of mathematical problems that can serve as prototypes. Recalling and 

using a system of prototypical problems relies, in turn, on three components of the 

problem-solving ability, which were pointed out by English (1998):  the ability to 

recognize the underlying structure of a problem and to detect corresponding 

structures in related problems, the ability to perceive mathematical situations in 

different ways and the ability to favour some problems over others in routine and 

non-routine situations. Notably, this conceptualization of mathematical knowledge 

base for problem posing can be seen as a result of iterative unpacking by itself.  

Problem-posing strategies that emerged in our data (but had also been pointed out in 

prior studies) included constraint manipulation, symmetry, chaining, data-driven 

reasoning and hypothesis-driven reasoning. A part of our analysis was directed to 

unpacking the chaining strategy. Considerations of aptness are conceptualized as the 

poser’s comprehensions of explicit and implicit requirements of a situation within 

which a problem is to be posed; they also reflect her or his assumptions about the 

relative importance of these requirements. Three types of considerations of aptness 

showed up in our data: aptness to the posers, aptness to the potential evaluators and 

aptness to the potential solvers of a posed problem. In the framework of Koichu and 

Kontorovich's study, considerations of aptness were indicated but not further 

unpacked. Their unpacking is one of the goals of a Ph.D. research of Kontorovich. 

Furthermore, one of the findings of the Koichu and Kontorovich's study was an 

identification and characterization of four problem-posing stages: warming-up, 

searching for an interesting mathematical phenomenon, hiding the problem-posing 

process in the problem formulation, and reviewing. Further refining and unpacking 

of these stages is another goal of a Ph.D. research of Kontorovich.                    

Interpreting a "mathematically meaningful problem" notion (a non-example)     

For some time, we looked for a way of interpreting a "mathematically meaningful 

problem" notion among the existing ways of unpacking the closely related notions, 

such as "beautiful problem" and "interesting problem". However, the resulting 

interpretation has not been done by an iterative unpacking strategy. Thus, the chain 

of theoretical considerations presented below can be seen as a non-example of 

iterative unpacking strategy.   

On one hand, the literature on aesthetic aspects of mathematics informed us that an 

agreement about what constitutes a beautiful problem is elusive, but offers quite 

stable lists of general characteristics of such problems and their solutions, such as 

clarity, mathematical deepness and complexity, cleverness, novelty and surprise. 

Second, we accepted the Crespo and Sinclair's (2008) argument that problems' 

descriptors such as "meaningful" belong to the rarefied discourse of mathematicians 

rather than that of learners. Crespo and Sinclair (2008) suggested that the learners' 



  

normative understanding of what qualifies as a worthwhile problem may develop 

around the notions of "mathematically interesting" or “tasty.” Third, we decided to 

build on the Goldin's (2002) idea that general characteristics of problems, such as 

"meaningful," "beautiful" or "interesting," should be seen as instantiations of one’s 

internal multiply-encoded cognitive/affective configurations, to which the holder 

attributes some kind of truth value, and not as "objective" qualifiers of the problems.  

Consequently, we decided to treat in the study the descriptor "meaningful" in the 

manner that have been developed in past research for treating the descriptors 

“interesting” or “beautiful”. Namely, we operationally considered a posed problem 

mathematically meaningful (or interesting or beautiful) if it was evaluated as such by 

the poser of the problem, its readers or solvers. This decision suited our research 

needs, but could not be seen as unpacking, in the meaning specified in the rest of the 

examples. We rather bypassed delving in the cognitive and affective mechanisms 

underlying one's use of the descriptors and just explicated how the posed problems 

were operationally qualified in our data.                     

AFFORDANCES AND LIMITATIONS 

In terms of Kuhn (1962/2012), the growing interest of the mathematics education 

community in networking theories might suggest that mathematics education as a 

research field is in transition from pre-paradigm phase to normal science phase. An 

iterative unpacking strategy discussed in this article is reminiscent of the 

accumulation-by-development strategy considered by Kuhn as the main 

developmental force of science during normal science periods. Indeed, the "further 

elaborating on…" discourse is typical for the periods of normal science, but not for 

the periods of paradigmatic shifts and scientific revolutions.  

The presented strategy can also be seen as a particular case of the strategies of 

coordinating and combining (Prediger et al., 2008), the case that emphasizes 

accumulation of knowledge on local phenomena by establishing a specific 

connections between background and foreground theories. The specificity of the 

strategy is, in particular, in the dynamic relationship between the theories: one theory 

may serve as an overarching framework in one case, and as a source of conceptual 

tools for elaborating on elements of another theory in another case. These 

observations provide a background for pointing out some of the affordances and 

limitations of the strategy.  

From a practicing researcher perspective, an iterative unpacking strategy can be 

instrumental for: 

- situating a study in the literature and highlighting its theoretical contribution; 

- wording research questions in terms of a particular conceptual framework 

without suppressing the possibility to further use additional conceptual 

frameworks in a coherent manner; 



  

- justifying the chosen level of granularity in data analysis.    

More generally speaking – here I follow the argument presented in Prediger et al. 

(2008) – an iterative unpacking strategy can be helpful for "better collective 

capitalization of research results, [adding] more coherence at the global level of the field,…, 

gaining a more applicable network of theories to improve teaching and learning and finally 

guiding design research" (p. 170). 

As mentioned, one limitation of the iterative unpacking strategy is that it stops being 

important outside of the normal science periods (cf. Kuhn, 1962/2012). At the pre-

paradigm periods, the strategies of ignoring, comparison or contrasting are typically 

in use. At revolutionary science periods, further elaborating on the elements of 

previously developed theories falls out of the mainstream. The use of the iterative 

unpacking strategy is limited also within the normal science periods. Briefly, all the 

conditions for the use of the strategies of coordinating and combining discussed in 

Prediger et al. (2008) apply.             
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