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There are two fundamental dilemmas that appear throughout human life:  (1) Do we 
have to understand being able to do, or vice versa? and (2) Should things be 
emphasized as objects or as processes? These dilemmas can be converted to the 
question of the balance between conceptual and procedural knowledge. This article 
represents two research-based and empirically tested approaches: the educational 
approach emphasizing conceptual knowledge and the developmental approach 
stressing procedural knowledge. Pedagogical implications of these approaches are 
discussed within tensions between different paradigms. 
 

INTRODUCTION 
ATCM 2008 plenary (Haapasalo, 2008) emphasized the following tensions when 
developing research-based theories for instructional praxis: (1) Objectivism vs. 
Radical Constructivism, (2) Developmental Approach emphasizing procedural 
knowledge vs. Educational Approach stressing conceptual knowledge, (3) Gagne's 
Systematisation emphasizing guided learning vs. Minimalist Instruction emphasizing 
student's volition to learn, (4) Instrumentation where technology is shaping the 
actions of doing mathematics vs. Instrumentalisation where technology is shaping 
also the mathematical objects, (5) Learning by Instructional Materials vs. Learning by 
Design, (6) Teaching mathematical contents vs. Emphasizing sustainable heuristics 
from the history of mathematics, and (7) Looking at internal problems of 
mathematics education vs. Applying business principles to shift the bad reputation of 
mathematics. These tensions can be converted into the following Challenges: 
 Ch1: Solid theories for collaborative social constructions,  
 Ch2: Solid theories to link conceptual and procedural knowledge,  
 Ch3: Dilemma between systematisation and minimalism,  
 Ch4: Relating instructional design and assessment to instrumental genesis,  
 Ch5: Learning by Design,  
 Ch6: Revitalizing sustainable heuristics, and   
 Ch7: Applying business principles to shift the bad reputation of mathematics. 
This article represents responds to Ch2 and discusses pedagogical implementations 
taking into account some key points of the other tensions with their challenges. To 
justify the characterization of the two knowledge types in this article, let us first pick 
up some findings of the literature analysis of Haapasalo and Kadijevich (2000).  



  
• According to Ivic (1991), Piaget made a distinction between ‘practical knowledge’ 
and ‘conceptual knowledge’, whereas Vygotsky dealt with three levels of knowledge: 
‘manifest content’, ‘instrumental knowledge’ and ‘structural knowledge’. 
• For Anderson (1983) procedural knowledge comprises condition-action rules, 
whilst ‘declarative knowledge’ is composed of tangled hierarchies of cognitive units.  
• Nesher (1986) made a distinction between learning algorithms and learning for 
understanding, pointing out that ‘algorithmic performance’ and ‘understanding’ can 
only be examined separately after the learning has been completed. 
• Hiebert & Wearne (1986) emphasized that procedural knowledge is rich in 
algorithms for completing tasks but is lacking in relationships, whereas conceptual 
knowledge is rich in relationships but is lacking in algorithms for completing tasks.  
• Skemp (1987) proposed ‘instrumental understanding’ referring to the ability to 
utilize rules without knowing why they work, ‘relational understanding’ referring to 
the ability to infer particular rules or procedures by considering some general 
relationships, and ‘logical understanding’ denoting the ability to reason deductively. 
• Gray & Tall (1993) define ‘procept’ as “a combined mental object consisting of a 
process, a concept produced by that process, and a symbol which may be used to 
denote either of both”, and introduce ‘procedural thinking’ and ‘proceptual thinking’.  
• Sfard (1994) distinguished between ‘operational thinking’ and ‘structural thinking’. 
While the former deals with processes in terms of operations on objects, the latter 
refers to objects made out of these processes. 
In addition to this cavalcade, it is appropriate to mention that Rittle-Johnson, Siegler 
and Alibali (2001) define ‘procedural knowledge’ as the ability to execute action 
sequences to solve problems, whilst ‘conceptual knowledge’ is implicit or explicit 
understanding of the principles that govern a domain and of the interrelations 
between units of knowledge in a domain. They suggest that these two knowledge 
types develop interactively, and the key mechanism underlying these relations is 
change in problem representation. However, their terminology ‘conceptual 
understanding’ and ‘procedural skill’ could be questioned as Devlin (2007) does, for 
example. To avoid the view that procedural knowledge would be dynamic but 
conceptual knowledge would be static, Haapasalo and Kadijevich (2000) suggest a 
characterization that is used to discuss the topic of this article because it fits 
constructivist paradigms of teaching and learning.   

DYNAMIC VIEW OF CONCEPTUAL AND PROCEDURAL KNOWLEDGE 
The two knowledge types are characterized as follows: 
• Procedural knowledge (denoted by P) denotes dynamic and successful utilisation of 
particular rules, algorithms or procedures within relevant representation forms. This 
usually requires not only knowledge of the objects being utilized, but also the 
knowledge of format and syntax for the representational system(s) expressing them. 



  
• Conceptual knowledge (denoted by C) denotes knowledge of and a skilful “drive” 
along particular networks, the elements of which can be concepts, rules (algorithms, 
procedures, etc.), and even problems or problem fields (a solved problem may 
introduce a new concept or rule) given in various representation forms. 
The dynamic view of C fits modern theory of neural networks allowing sophisticated 
and complicated problem solving through “skilful drive”. This means refusing the 
view of Rittle-Johnson, Siegler and Alibali (2001) that P would be the only 
knowledge type when executing action sequences to solve problems, and C would 
mean “understanding of the interrelations between units of knowledge in a domain”. 
However, the author agrees with their view that the mechanism underlying the 
relation of P and C is change in problem representation. 
The characterization above does not contradict the view of Star (2007) that both 
knowledge types can appear for a person either on a superficial or a deep level. P 
often calls for automated and unconscious steps, whereas C typically requires 
conscious thinking. However, the former may also be demonstrated in a reflective 
mode of thinking when, for example, the student skilfully combines rules without 
knowing why they work. Like the concept of ‘problem’, the P vs. C knowledge 
distinction is at least person, content and context dependent. As regards educational 
context, it depends on the pedagogical theory guiding the learning process (cf. 
Challenges above). This situation is immediately realized when suitable tasks are 
looked for. These aspects are discussed in Haapasalo and Kadijevich (2000). 

TWO PEDAGOGICAL APPROACHES 
Based on the logical relation between P and C, two pedagogical approaches are 
defined: developmental and educational. The first one is based upon the genetic view 
(i.e. P is necessary but not sufficient for C) or the simultaneous activation view (i.e. P 
is necessary and sufficient for C). The logical basis of the second one is dynamic 
interaction view (i.e. C is necessary but not sufficient for P), or the simultaneous 
activation view again. The latter means that the learner has opportunities to activate 
simultaneously conceptual and procedural features of the object. 
A literature analysis reveals the dominance of P over C in the development of 
scientific and individual knowledge (cf. Haapasalo & Kadijevich, 2000). Regarding 
the phylogenesis of mathematical knowledge, P has developed faster than C because 
early mathematicians were pragmatically oriented. Ivic (1991) underlines that for 
Vygotsky, scientific knowledge is based upon procedural and conceptual 
components, and for Piaget, C comes developmentally later and is based on practical 
P. Furthermore, for both Piaget and Vygotsky, an awareness of one’s own thinking 
processes is related to “mature stages of development and to the appearance of 
conceptual systems of knowledge.” This analysis clearly emphasizes that it is the 
presence of metacognition that is crucial to C development and that for this reason 
acquisition of P is generally more accessible. 



  
We know from the basics from cognitive psychology that our world is a world of 
meanings, not a world of stimuli. If adapting constructivist paradigm of teaching and 
learning, instead of 'learning environments' we should speak about 'investigation 
spaces' appearing psychologically meaningful for students. An interactive 
manipulation at computer screen, for example, can be more “real” than what is 
conventionally called “real world”. This implies the need to apply a developmental 
approach in the instructional design: students should have opportunities to go for 
their more or less spontaneous P. On the other hand, a very crucial educational goal 
in a modern society is to scaffold citizens' abilities to identify and construct links 
within complicated multi-causal and multi-disciplined knowledge networks. This 
means investing on C, even in such a way, that students also learn appropriate 
procedural skills. Thus, the educational approach seems to cause a conflict with 
developmental approach. However, based on large empirical data and sophisticated 
statistical analysis, the recent dissertation of Lauritzen (2012) reveals that actually 
both approaches should be combined. 

LAURITZEN STUDY 
In many cases difficulties for students are caused from the fact that mathematical 
things should be understood simultaneously both as process as concepts, being so- 
‘procepts’ in the sense of Gray & Tall (1993). Function is one of the best examples of 
procept and hence an especially interesting research object. There are few studies of 
how these two knowledge types of function relate to each other and what could be an 
appropriate pedagogical implication. Even to find an instrument to measure P and C 
independently from each other appears to be a hard task (cf. Haapasalo & Kadijevich 
2000 and Kadijevich & Haapasalo 2001).  
Lauritzen explored how P and C of functions can be measured, what is the 
relationship between them, and how the students' ability to apply functions within 
economic and other mathematical tasks depends on the two types of knowledge. The 
outcome was related to the pedagogical philosophy applied to the study population at 
the upper secondary school. Data was collected at three different stages from 476 
students in economics. Confirmatory factor analysis was applied to develop tasks to 
measure three components: ''procedural knowledge of functions', 'conceptual 
knowledge of functions' and 'the ability to apply functions'.  
The study revealed that a large group of subjects scored well in P but modestly in C. 
Scores in C appeared even lower among those subjects who showed poor P. 
However, all students who scored high in C, scored also high in P. Thus, the results 
support the genetic view. On the other hand, P alone seems to be insufficient for the 
student to be able to apply functions. The educational background of the subjects 
might have fostered this outcome. Interviews indicated that the focus of the school 
teaching has been on simple procedures without links to abstract C.  



  
SOPHISTICATED INTERPLAY BETWEEN TWO APPROACHES 

Now that the fundamental theory of author's MODEM project (Model Construction of 
Didactical and Empirical Problems of Mathematic Education; see Haapasalo, 1993)1 
has found a rigorous reassurance by Lauritzen, it is appropriate to represent it in more 
detail by considering the conceptual field C [Proportionality (Cprp), gradient of a 
straight line through origin (Cgrd), “Depends Linearly on” (Clin)]. The abbreviations 
are used to stress that those three concepts differ actually just by verbal (V) 
descriptions, as the symbolic (S) and graphic (G) expressions are exactly the same 
ones. Figure 1 illustrates an appropriate pedagogical meta-strategy when trying to 
scaffold students in constructing conceptual knowledge C. Dynamical links between 
representation forms of gradient (Vgrd, Ggrd, Sgrd) are constructed, at first. After that, 
the student can easily link two new verbal expressions Vgrd and Vlin to his or her 
dynamical cognitive network by just renaming them. So, the umbrella approach is 
definitely educational. However, to reach the conceptual field C in Figure 1, we have 
to find a starting point that is psychologically meaningful for the student and which 
can be understood by using spontaneous procedural knowledge (i.e. applying 
developmental approach). For this purpose, the everyday concept of ‘slope’ can be 
used instead of ‘gradient’, at first. Figure 2 illustrates interplay between the two 
approaches within the MODEM -framework. 

 
Figure 1. Extending the conceptual knowledge Cgrd to C within educational approach. 
  

 
 
Figure 2. Interplay between developmental and educational approach.   

                                         
1 See http://wanda.uef.fi/lenni/modemeng.html, and regarding Figures 1 and 2: http://wanda.uef.fi/lenni/programs.html 



  
When planning a constructivist approach to a certain concept, the focus is on the left-
hand side of Figure 2. On the other hand, when offering students opportunities to 
construct links between representation forms, the focus is on the right-hand box, 
which describes the stages of mathematical concept building.   
Concept Orientation (O) forms the first phase of the quasi-systematic concept 
building. It basically utilizes a developmental approach: the interpretations of the 
situation can be based on mental models of the pupils, coming, more or less, from 
their naïve procedural ideas. These act like a wake-up voltage in an electric circuit 
that triggers another, much more powerful current to be amplified again. The 
procedural and conceptual knowledge types start to support each other, offering a 
nice opportunity to use the principle of simultaneous activation, for example. This 
principle, being at the intersection of the logical definitions of the two approaches, 
links the developmental approach and educational approach in a most natural way.  
The role of the Concept Definition (D) is to offer students opportunities to make their 
own investigations, to express results especially in verbal forms in each case, and to 
argue about these results within the collaborative teams and between the teams. As a 
result of social construction, a definition for the concept is born, meaning that 
students try to fix the relevant determiners of the concept in verbal, symbolic and 
graphic forms. Thus, we notice how the response to Ch1 (cf. Figure 1) is embedded 
within the knowledge construction, including interesting pedagogical variables. The 
next phases of concept building utilize the principle of dynamic interaction.  
In the phase of Identification (I) we have to give students opportunities to train them 
selves in identifying concept attributes in verbal (V), symbolic (S) and graphic (G) 
forms. For this we need six kinds of tasks (I): IVV, IVG, IVS, IGG, ISS and ISG. 
During the learning process, the teacher must be ready, if necessary, to begin with 
tasks that require distinguishing between only two elements before going on to the 
identification of several elements.  
In the phase of Production (P) we have to give pupils the possibility to produce from 
a given presentation of the concept another representation in a different form. The 
development of production (P) requires nine combinations: PGV, PGS, PGG, PSG, 
PSV, PSS, PVS, PVV and PVG. The tasks of identification and production must be 
achievable without any complicated processing of information on the student's part.   
In the phase of Reinforcement (R), the goal is to reinforce and utilize the concept 
attributes, to develop procedural knowledge to be used in problem solving and 
applications, and extend the concept to a conceptual field. After constructing 
appropriate links between representation forms S, G and Vgrd (i.e. using the term 
‘gradient’ in the verbalisations), this knowledge structure can be easily extended to 
the conceptual field C in Figure 1 by linking two other verbalisations Vprp and Vlin 
(i.e. the terms ‘proportional’ and ‘depends linearly’). In computer terminology this 
would mean nothing else than a “rename command”.   



  
The MODEM- framework turned out to be suitable to design conceptual tasks for 
assessment as well learning. Several experimental studies revealed, among others, 
that (1) for most students, concept building was a long process in which the five 
phases (of the previous page) could be utilized systematically and successfully, (2) 
the identification phase played a central role in concept building, and seemed to 
create a pleasant learning environment for the formation of concept attributes, (3) C 
was most reliably measured by the production tasks, which were usually difficult for 
most students, especially the PVV type, (4) the framework probably promoted also P-
C links, because a significant positive correlation was found between students' scores 
on those task types (Kadijevich and Haapasalo, 2001). Students’ scores in most 
verbal problems concerning fractions were significantly higher than their scores in 
these same tasks, which were rewritten directly in the symbolic form at the end of the 
test (it was not allowed to return to the previous tasks). Thus, MODEM 1993 studies 
anticipated the findings that in TIMSS 1999 study the Finnish students scored modest 
in mechanical symbolic tasks but very well in context-oriented tasks of PISA 2000 
study. The MODEM -framework also offers promising opportunities to remove the 
gap between school and university, being a serious concern of ICMI. Ehmke, 
Pesonen & Haapasalo (2011) found that missing out the orientation and definition 
phases caused difficulties to university students when trying to utilize dynamical 
applets to whitewash their naïve and stereotypic conceptions gained in school.   

LINKS TO OTHER CHALLENGES 
The discussion above shows that for being able to respond to Ch2 in appropriate way, 
the other six Challenges must be taken into account in one way or other. The 
MODEM framework allows educators to respond to Ch,1 especially in the left hand 
side of Figure 2 when students make their investigations to find relevant attributes for 
the concept. Regarding Ch6, teaching and assessment should reflect tools, which 
have been proved to be sustainable in the history of human thinking processes and for 
the generation of new mathematics. Zimmermann's (2003) study of the history of 
mathematics reveals eight main activities, which proved to lead very often to new 
mathematical results at different times and in different cultures for more than 5000 
years: order, find, play, construct, apply, calculate, evaluate, and argue).  It might be 
appropriate to use this framework not only in instructional design but to develop an 
instrument to measure student profiles: (1) Math-profile: How strong each activity 
appears when using the term 'mathematics', (2) Identity-profile: How good the 
student thinks he or she is performing each activity, and (3) Techno-profile: How 
strongly technology can help to perform each activity. 
Studies of Haapasalo & Eronen (2011) suggest that mathematics teaching in school 
does not give support for those activities, and the support gained from university 
mathematics seems to be even lower. The only exception is calculating that gets an 
overdose. On the contrary, doing voluntarily mathematics with a graphic calculator, 
even during a short period of time outside the classroom, enlarged 8th grade student's 
mathematical and identity profiles (see Eronen & Haapasalo, 2010). Thus, we come 



  
to Ch3: minimalist instruction and self-regulated learning. Even though for the 
planning of learning environments a quasi-systematic framework (cf. Figure 2) is 
crucial, in learning situations students must have freedom to choose the problems that 
they want to solve within continuous self-evaluation instead of relying on guidance 
by the teacher. Such an assumption of minimalism, introduced in Carrol (1998) was 
adopted in the so-called ClassPad Project when students at 8th grade got opportunity 
to study voluntarily topics of 9thclass mathematics with ClassPad calculator during 
their summer holiday. This totally strange tool was shortly represented to them just 
few days before their summer holiday. The only duty was to write a portfolio if they 
worked with the tool. The sample below is taken from the portfolio of a quite average 
student (from a 75 minutes work on 15th of July 2005, beginning at 00:27 a clock). 

 
Figure 3. Example of instrumentalisation during spontaneous ClassPad work. 
The portfolio example reveals that by manipulating the equation spontaneously (i.e 
C), the student explained how the parameters affect the position and location of the 
line (i.e. manipulated P). Through instrumentalisation she made her own 
interpretation that the line moves along the x-axis. This interpretation against the 
standard view appeared also among other students when they six months later studied 
the whole 9th grade mathematics only with the ClassPad calculator without any 
textbook or traditional homework. In addition to the fact that the cognitive results 
were higher than in the traditional teaching, pupils' above-mentioned profiles were 
extended when measured by using the eight Zimmermann activities (see Eronen & 
Haapasalo, 2010).  



  
Ch3 was responded to by planning the problems for student’s investigations within a 
quasi-systematic MODEM framework (see Figure 2), whilst they were arranged to 
form a so-called problem buffet where students could “jump the gun” by choosing 
from this buffet any problem that they wanted. A student team, for example, initially 
selected a quite complicated problem on optimizing mobile phone costs, which was 
planned to be a reinforcement task for C in Figure 1. After realizing that models 
appeared too difficult for them, they then chose a problem set that happened to 
consist of identification tasks - the lowest level of understanding the links between 
representations (cf. Figure 2). This example shows that a sophisticated interplay 
between a systematic and minimalist approach can be achieved with quite simple 
pedagogical solutions. 
The portfolio example above also demonstrates a response to Ch4 in the spirit of 
Haapasalo (2007): “instead of speaking about 'implementing modern technology into 
classroom' it might be more appropriate to speak about 'adapting mathematics 
teaching to the needs of information technology in modern society”. It also 
demonstrates a response to Ch5: students may be seen as designers of their own 
lessons, whether ICT-based or not, rather than just as knowledge users. The fact that a 
14 years old girl was ready to spend 75 minutes to work with ClassPad in the middle 
of the most beautiful Finnish summer (see Figure 3) shows that mathematics can be 
“edible and digestible”, fulfilling a demand of Ch7 as suggested in Haapasalo (2008).  
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