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This paper, taken directly from the author’s doeldhesis, (Joubert, 2007) develops
a theoretical and methodological framing for exammgn student learning in the

context of mathematics classrooms where computerased. The framing, drawing
particularly on the theories of Brousseau (199&kes into account not only the
student interactions with the environment but alse crucial role played by the

feedback from the computer. This approach focusethe processes in which the
students are engaged and suggests the sorts ahdtitns that might provide

evidence of student mathematical learning. The papecludes with a section which
analyses an episode of student mathematical actigihg this framing.
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BACKGROUND AND CONTEXT

Mathematical activity, like all human activity, nsediated by tools, which include not
only symbol systems, mental representations, dlgos and representational
systems (such as functions and co-ordinate graphsiso physical tools such as pen
and paper, calculators, measuring devices and s&€Computers can be seen as a
particularly interesting tool because of their rinsically cognitive character
(Balacheff & Kaput, 1996, p 469). For some softwased in the teaching and
learning of mathematics, the implication is that,a greater or lesser extent, the
software can perform mathematical processes (ortHdomathematics’) (Hoyles &
Noss, 2003; Sutherland, 2007) for the user. Fomg@ka, in traditional mathematics
classrooms producing a bar chart from a set of das@en as a valid mathematical
activity, but a data handling package is able @ tlis mathematics (as described by
Ruthven and Hennessey (2002)). This has importaptications for the design of
classroom mathematical tasks.

A second important characteristic of software,tegldo its cognitive character, is the
fact that software provides feedback for the user;

‘The interaction between a learner and a compgtéased on a symbolic interpretation
and computation of the learner input, and the faeklmf the environment is provided in
the proper register...” (Balacheff & Kaput, 1996, {04

This feedback, together with the ability of theta@ire to ‘do the mathematics’ as
described above, are perhaps the most compellagpns for seeking to understand
the way these tools are used in ordinary classrooms

The current literature focuses more on teacherstgpdions of the actual use of
computers in mathematics classrooms (Monaghan, ,2Bddhven & Hennessy,
2002) than on the student processes (Lagrange, @08al3). However, as Tall (1995)



argued over fifteen years ago, there is a needdosfour attention on the students’
thinking processes in situations where computerge hbecome established in
classrooms, to find out ‘what really happening under the surface’(p 11, italics in
original). It seems that this research agenda tlas@ been fully met (Lagrange et
al., 2003) and that there is still a need to dgvelodetailed understanding of the
students’ mathematical activity and learning insthauthentic situations.

The data analysed in this paper is taken from dysthich aimed to address this

research agenda. The study aimed to contributeetbady of research conducted in a
naturalistic research paradigm with a particulaenest in the use of computer
software in mathematics teaching and learning. pdper provides a theoretical and
methodological framing for the observation of stdieteractions in these contexts
with the overall aims of a) establishing an undarding of the relationship between
observable student mathematical activity and tiesthematical learning and b)

understanding the role of the computer. It lays thet framing in detail and then

provides an example to demonstrate how it has bsed.

THEORETICAL FRAMING

To theorise the classroom situation, the paper sliraw the theory oDidactique
(Brousseau, 1997) which identifies the ‘didacticahtract’ between teachers and
students and is based on detailed observationsitb€atic mathematics classroom
settings. (This is explained in detail in my doatdhesis (Joubert, 2007)). Brousseau
uses the notion of thailieu; ‘everything that acts on the student or that atts on’

(p 9) to describe these settings. It is throughraatting with themilieu and with the
tools of themilieu (including the task set for them by the teachea} the students
engage with classroom mathematics. The studenttttens can be conceptualised
as a ‘dialogue’ between the student (or group wdlesits) and the feedback from the
milieu (Brousseau, 1997 he feedback from thenilieu can take many forms; for
example verbal feedback from other students andetheher, an outcome of a game
or a graph produced by computer software. The itapae of feedback should not be
underestimated; as pointed out by Balacheff (1990)

‘The pupils’ behaviour and the type of control thepils exert on the solution they
produce strongly depends on the feedback givemnguhie situation. If there is no
feedback, then the pupils’ cognitive activity idfeient from what it could be in a
situation in which the falsity of the solution cduiave serious consequences’ (p 260).

Student activity and mathematical learning

Brousseau (1997) uses the notion of ‘modes of miahi to describe the different
types of dialectic interactions between studentd te milieu; he suggests that as
they work through a mathematical task, they wilgage in all or some of the
dialectics of action, formulation and validation.

Brousseau (1997) describes a dialectiaatfon as the student constructing an initial
solution to the problem straight away, informed Hlgr current knowledge. He



explains that, in dialectics of action, students usiplicit models’, making decisions
based on rules and relationships of which they nwyyet be conscious; he suggests
that the strategies the student uses ‘are, in a, Wwaypositions confirmed or
invalidated by experimentation in a sort of dialeguth the situation’ (p 9).

It is possible thatall dialectics between the student and théieu in a given
didactical situation are dialectics of actionfdr example, the student knows what to
do and how to do it in order to complete the td$ks would mean that, although she
completes the task, she does not need to extenanbdrematical knowledge or
understanding to do so; ‘simple familiarity, eveativze familiarity ... never suffices
to provoke a mathematization’ (Brousseau, 19971).21

There may be an argument that, in some casesuattisits of action, the feedback
from themilieu seems to have little or no role. For example, iesson where the
student works through a set of examples, it coddthat the only feedback they
receive is when the teacher reads out the ansiWevgever, as Brousseau argues, the
student can be seen to be anticipating the restilker strategies, and in this sense
the milieu provides feedback, which can perhaps be seen @Exjuested and as
expected; it does not require the student to adapttrategies. On the other hand,
feedback may occur from time to time as the studerks. For example, students
may use self-checking methods such as multiplyungfactorised functions. In these
cases, the dialectical nature of the student iotenas is clearer, and the feedback
from the milieu can be seen as requested and as ‘a positive otiveeganction
relative to her action’ (Brousseau, 1997). A nagatsanction might prompt the
students to formulate new strategies, but it map aksult in a sort of ‘guessing’
behaviour, where they simply try something différbat do not use the feedback to
inform the guess.

Dialectics offormulation occur when students meet a difficulty or problesritey
engage in mathematical activity; Brousseau expldiree when a solution to a
problem is inappropriate, the situation should fbadk to the students in some way,
perhaps by providing a new situation. That mearsd the student may become
conscious of her strategies and begin to make stiggs. Brousseau includes in this
category ‘classifying orders, questions etc....” {f).64e goes on to say that in these
communications students do not ‘expect to be cdidied or called upon to verify ...
information’ (p 61). In making these formulatioree tstudents construct and acquire
explicit models and language, which, as Christianaad Walther (1986) argue,
serves to make the learner conscious of strate'gietsons become conscious for the
learner’ (p 268).

In the discussion above (‘Action’), the possibilay trial and error cycles of student
behaviour was proposed. In these trial and erralediics, the role of the feedback
was seen to be only to inform the student thastretegy she had tried was incorrect.
However, depending on the nature of the problens possible that the feedback
may also provide some clue for the student about twoimprove her strategy and



she may formulate a new strategy; this approach lmanseen as ‘trial and
improvement’ or ‘trial and refinement’ approach {t&rland, 2007).

Both action and formulation involve manipulating dues in the game’ or
mathematical objectsjalidation however involves manipulating ‘statements about
the moves’ (Sierpinska, 2000, p 6). Validation dfere takes place when an
interaction intentionally includes an element obgdt theorem or explanation and is
treated thus by the interaction partner (or inmrtor) ‘this means that the
interlocutor must be able to provide feedback...'oi&zseau, 1997 p 16). Brousseau
argues that this interaction should be seen asledtic because of the presence of the
interlocutor. Examples of dialectics of validatiorclude justification (perhaps of a
procedure, a word, a language or a model), orgapigheoretical notions,
‘axiomization’ (ibid p 216), and developing proofs.

Brousseau, while suggesting that all three modegsraduction are ‘expected from
students’, (ibid p 62) argues that it is througtuaions of validation that genuine
mathematical activities take place in the classrodimere seems to be general
agreement with this within mathematics educatioor (xample, see Lakatos,
Worrall, & Zahar, 1976; Romberg & Kaput, 1999).

Brousseau suggests that situations of validatiomalpooccur very often and are
unlikely to occur spontaneously and it is probahlgt validation will not take place
unless it is explicitly called for.

A final comment in this section about validatiomcerns the role of feedback. The
implication from Brousseau’s ‘interlocutor’ (abowe)that this interlocutor provides
feedback. It is in discussion with this interloautbat the individual develops his or
her arguments; it is unlikely that feedback willhw® from any source in thailieu
other than classmates or the teacher because néd#ukto convince someone else.

METHODOLOGICAL FRAMING

The focus of the investigation was on what takeelin authentic classrooms. The
implication is that the classroom situations shordflect, as far as possible, the
everyday practice of teachers and students; teasheuld teach and students should
react as they normally do, all the teachers’ teaghiecisions are their own; the
choice of topic, software, approach and task. Qyssiple constraint required by the
research was that the students should work in sgpalps or pairs so that
interactions between them (what they said andatid)d be observed. This constraint
IS not a major concern; it is common for studeat&ork in pairs in computer rooms.

The teachers taking part in the study were askedhtwose one small group of
students as a ‘focus group’; the request was ey those a group whom they
perceived to be of average attainment and who nbghexpected to talk as they
worked (to provide verbal data). When the studevdsked on the task the teacher
set, this focus group was observed.



Collecting and analysing data

The focus on processes required the researchex able to see and hear what the
students did and said as they engaged with theitsgctand these were captured on
video. Screen activity was recorded using softwataech ‘grabbed’ the screen
automatically every 30 seconds.

The perspective adopted uses the interactions batwtidents and the setting or
milieu (in other words, the dialectics) as the unit ddilgsis, and pays attention to the
‘flux of ongoing activity’ (Nardi, 1996). Howeveralso as argued above, each
interaction is situated in time, and related totladl other interactions taking place as
the students work. The implication of this pointwoéw is that, to make sense of
interactions, it is necessary to understand theldimfy, or narrative, of all these

interactions.

Creating the narrative

The interactions were coded using a scheme defreed the theoretical arguments
developed above; to represent the type of studatihematical interactions (action,
formulation, validation). These dialectics provaeleseful way to investigate the data;
mathematical thinking and acting requires all thisa®ed the degree to which each is
present will provide an initial understanding of ttudents’ mathematical learning as
it relates to the feedback from thalieu. Further interactions (technical and other)
were also represented. In order to create a nagratine coded interactions were
placed on a timeline.

Figure 1 below shows part of a timeline and exganow the interactions are
represented. On the left are the six categoried,aanthe right is part of a coded
timeline. The section of coded timeline shows whearactions occur in relation to
others and the length of each block is directlypprtional to the length of time the
interaction lasts. This part of the timeline begimgh a formulation, which is

followed by an action, some computer feedback, reroformulation, a technical
interaction and one ‘other’ interaction. It does$ imzlude any validation interactions.

Figure 1 Explainsthelayout and elements of thetimeline
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GRAPHSWITH AUTOGRAPH

The data discussed below was taken from a seriéisenfessons for 14 to 15 year
olds. From the class of approximately 25 studdhtsteacher chose a focus group of
three girls; Claire, Alice and Charlotte. (Thesenea are pseudonyms).

According to the teacher, the overall aim of thees fiessons was for the students to
develop an understanding of the relationship batwibe algebraic and graphical
forms of quadratic functions of the foryax? + bx + ¢, whereb andc are integers.
(The initial interview with the students establidhiibat they knew that these graphs
would be ‘u-shaped’ but they had no experienceocotructing the graphs by hand.)
In some lessons, the softwakeitograph was used to produce graphs of quadratic
functions. Some of the lessons took place in thestbom, and some in a computer
room. The first of these lessons is analysed below.

The task for this lesson, set out on a worksheedidwh out to the students, was to use
Autographto create graphs of quadratic functions and tbesketch the graphs onto
a paper-based worksheet. The teacher’s stated ith {o the researcher and the
students) for the lesson was for the students tactice the interceptqwith the
axes, but this is implicit](It is argued in the thesis (Joubert, 2007) that tdsk is
unambitious and is unlikely to lead to significastdent learning. However, the
methodological approach adopted in the study was-imerventionist, and the
researcher had no influence on the task chosen hay teacher (perhaps,
retrospectively, mistakenly)).

The worksheet consisted of six similar questionswhich students were given an
equation, such ag = X — 6x + 8 (which the students had already factorised for
homework ay = (X — 2)(x — 4).

The students began by turning on the computer dading Autograph. This
technical interaction is the first on the timelisee Figure 2 below). They opened the
Enter Equationdialogue box and typed in the first functigre X — 6x + 8 This
action is the next interaction on the timeline. Btiedents went on to complete the
guestion, and Figure 2 below summarises the agttaiting place as the students
worked on this question.

The timeline shows the variou
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This analysis begins to unpick the student intevastwith themilieu; there are three

action dialectics, two formulation dialectics amebtfeedback dialectics. As will be

seen below, the first formulation dialectic is paied by the computer feedback. It is
perhaps unsurprising that there are no dialectfcgabdation as these were not
demanded by the task. However, the dialectics ohiddation, and in particular the

relationship of these to the computer feedbackwamth exploring.

The first formulation dialectic occurs in resporiesethe computer feedback, an on-
screen graph (see Figure 3 below). Alice remarked:

Can we see it all? Can we change the axes?

Without further discussion, she clicked on the AxeEkdit Axes menu commands.
This opened a dialogue box which allowed the sttedem enter values for andy
‘max’ and ‘min’ values. Claire suggested the changeeded:

(Points to the y minimupChange this one to minus two ammbifits to the y maximym
that one to, say, eight?¢ints to the x minimupjyAnd this one to minus two
and, yeah, that will do.

The second graph (see Figure 4) shows the comfmadback after this change. One
of the students commented:

That's better, OK now we can draw that.

Figure 3 First graph, Q1 Figure 4 Second graph, Q
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The students then went on to sketch the graph ein thorksheets. The second
formulation was an unremarkable discussion abowttiocsketch the graph.

The first point to note about this student activéythat the students did not seem to
find any difficulty in using the software. There svao discussion between them
about how to create the graph or how to make clsataythe scales on the axes. The
first computer output was a graph page with thelgraf the function drawn on it.
However, as Alice’s comment indicates, the studesatsted to change it. The reason,
it seems, was that theintercept could not be seen. Alice’s reaction gsfg that the
feedback was unexpected, and in response to tleispented feedback the students
changed the graph page.



The students did not discuss the changes, and tha&@ way of knowing the basis
for their decisions. However, it is likely thatwias based on the visual appearance of
the graph on the page because of Alice’s referamoet being able to ‘see it all'.

In the remainder of the lesson, the students fatbwnuch the same pattern of
activity. In general, they tended to type in theaepn of the graph, then adjust the
graph page by guessing maximum and minimum valagsljove) based largely on
the appearance of the graph. Only in one casehdig sketch the graph on paper
before entering the equation into the software (sdew).

Two dialectics of validation took place. The fistcurred as the students attempted
the fourth question. The teacher had encouraged thesketch the graph first, and
then to try it out on the computer but they founahiatake in the worksheet; whereas
they had been asked to solve the quadratic equetiox+ 15 = 0 by factorisation,
they had then been asked to sketch the graph ponding to y =¢ - 8x- 15 and in
the dialectic of validation the students explain@either very clearly nor very
confidently) why the y-intercept could not be -¥dter some further actions and
discussion they called the teacher and pointedheutnistake. The teacher asked how
they found the mistake. In response one of theesitisdsuggested:

We worked out that it would cut the axes there tnede pointing at predicted intercepts
on the screenhecause those numbers are the same as {haisdir{g at the
zeroes on the sheet).

Through her questioning, the teacher had drawraqgustification (second dialectic
of validation), by encouraging the students tocattite what they had noticed.
However, she did not questiamhy the roots correspond to the intercepts, and it
seems that both she and the students were cortaatom the visual connections
between the algebraic and graphical forms of tinetfan, rather than drawing on the
theoretical notions underpinning this connectioartler, it seems that the teacher
was relying on the computer to draw out connectiopsoncentrating on noticing
rather than explaining.

It could perhaps be expected that the studentsndnamade the connection explicit,
might use their understanding to adjust the grag@epin further questions, or to
sketch the graph before entering it on the compiitegir approach began as follows:

Alice: OK let’'s do the next one then.
Claire: What, draw it before?
Alice: No, I'm not doing that — too much hassle.

As the dialogue indicates, it seems that they pmedea trial and improvement
approach rather than a more theoretical approduoéir Talk indicates that they were
deliberately choosing this approach, even thougl kmew that it was likely that the
graph page would need to be changed later (byirgteew maximum and minimum
values for the visible parts of the page).



In the second dialectic of validation, one of thedents justified her choice of scales
to the others. Once again, however, she referrédaetéactorised equation but did not
attempt to explain why the factors were relateth&roots.

Overall student learning

The brief analysis above suggests that there wag student learning as evidenced
by the presence of dialectics of action, formulatamd validation. However, it seems
that many of the dialectics of formulation werewaby based, and were prompted by
the computer feedback. The students used a trihlraprovement strategy based on
the visual appearance of the graph, but there ideree that on several occasions
they made the connections to the equation (injtiasliggested by the teacher).
However, they chose to return to the former apgraaclater questions. Although
they connected the numbers in the equation to tiehgbut there was no attempt to
explain why the connection existed. There is som@lemce of mathematical
learning, in terms of the theoretical frameworkdjdsut the students never explained
the connections they found and their learning easden as relatively superficial.

CONCLUSIONS

Space has not allowed a detailed analysis of thieedlsson, but the example has
served to demonstrate the use of the chosen frarkewWtis brief analysis has,
however, suggested that to complete the task tiueists were not required to engage
in dialectics of validation, and it was primariljzet teacher’'s intervention that
prompted one of the two dialectics of validatiorsetved. The difficulty, perhaps,
lies in a confusion related to the role of the catep, which does the mathematical
work of creating the graph, and the question theenwihat mathematics will the
students do? Further, although the feedback frenttéimputer prompted dialectics of
formulation, it appears that it was easier forghedents to guess the changes needed
and to try these out than to adopt any systema#digtive trial and improvement
strategies.

The study overall set out to understand the ussoofputers in authentic classroom
situations; the analysis above has confirmed thporiance of understanding the role
of the computer. It particular it has emphasisedithportance of having a clear idea
of the mathematics the computer will do and thehesaiatics the students will do,
and of how feedback can be used so that tasksadkantage of the computer’s
potential to provoke situations of validation adlwas action and formulation.

NOTES

1
http://www.autograph-math.com/
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