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Abstract. In this paper I present my theoretical tool for reconstructing students’ 
mental structures and my application of the tool in qualitative data analyses. The tool 
is based upon Peirce’s semiotics. The data is taken from clinical interviews, in which 
mathematics students were given tasks dealing with the concept of basis. The aim is 
to reconstruct students’ individual mental structures concerning this concept.  
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AIM OF THE PAPER 

The theory of linear algebra is characterised by its high degree of interconnections 
between concepts. The concept of basis, for example, is directly connected to the 
concept of linear independence and the concept of a spanning set. Both are linked as 
defining conditions to basis. These concepts refer to other concepts – linear 
combination and span – so that one can with good reason state that basis is a concept 
of higher order. Understanding the concept of basis implies that one has a high ability 
to connect ideas.  

The research questions of this paper are as follows: Which individual mental 
structures of the concept basis of a mathematics student can be reconstructed when 
students solve a particular task concerning this topic? Additionally, this leads to the 
question: How can a person’s mental structure be reconstructed empirically? 
According to this, I demonstrate my theoretical tool for analysing students’ mental 
structures. I apply the tool via examples to thinking processes of students who are 
working on a task. Then the reconstructed thinking processes are condensed in a net 
by focusing on the individual’s mental structure of the concept of basis. Before doing 
so, I give a literature review of previous studies dealing with students’ difficulties in 
advanced mathematics. 

STUDENTS’ DIFFICULTIES IN LINEAR ALGEBRA 

Several studies are dealing with students’ difficulties of the conceptual nature of 
linear algebra. Sierpinska (2000) states that concepts are not used precisely and are 
not well-conceived. Moreover, students struggle to interpret signs in definitions and 
to use them for the construction of contextual mental structures. Several researchers 
of the MAA-Notes (Carlson et al., 1997) report that their students are able to 
reproduce procedures in known contexts successfully, but that they often fail to 
understand the meaning behind the procedures. Stewart and Thomas (2010) tie their 
study in with this aspect by trying out a framework for teaching the concept of basis 



(and other concepts) that emphasises the embodied aspect of basis. Their aim was to 
help students enrich their understanding. “The results of this study show that a 
number of the students tended to prefer to work procedurally“ (p. 186). Maracci 
(2008) shows that students conceived of linear combinations more as processes than 
as objects (in terms of Sfard’s process-object duality). Britton and Henderson (2009) 
described students’ difficulties in dealing with the concept of closure. Students 
struggled with applying the formal concept of a vector space to the algebraic notation 
in a task. Furthermore, many of the difficulties that students experience in linear 
algebra are presented in detail in Dorier et al. (2000). These studies all highlight that 
students struggle with the conceptual nature of the strictly formalised and abstract 
theory of linear algebra. 

MENTAL STRUCTURES AND UNDERSTANDING 

Several authors describe levels of learners’ construction of concepts (hierarchical or 
otherwise) (e.g. Vollrath, 1984; Winter, 1983; Harel, 1997). All have in common that 
it is essential to connect single ideas for understanding a concept. This corresponds to 
psychological views (e.g. Skemp, 1976; Sweller, 2006). According to Skemp (1976) 
pairing single ideas with concepts, by connecting them, results in a construction of a 
new idea, which he calls a “relation” (p. 37). A “transformation” (ibid., p. 37) is 
applied to an idea and describes a function of the idea. The entire process of 
connecting and transforming ideas results in a construction of a complex structure. 
“The study of structures themselves is an important part of mathematics; and the 
study of the ways in which they are built up, and function, is at the very core of the 
psychology of learning mathematics” (ibid., p. 39).  

A mental structure is known as “schema” (ibid., p. 39). It is the “major instrument 
(…) for solving new problems” (ibid., p. 43) and for the formation of concepts that 
are yet new. Based on mental structures, Skemp defines understanding something as 
being able to assimilate it into an appropriate mental schema. Understanding is 
subjective. I assume that an individual’s mental structure has to be actively 
constructed by the individual. Information given to him or her in the form of external 
representations needs to be constructed by the individual. In mathematics, such a 
construction of mental structures takes place in dealing with signs. Thus, I combine 
the cognitivistic constructivism approach with the semiotic approach. 

THEORETICAL TOOL – ASPECTS OF PEIRCE’S SEMIOTICS 

The triadic sign model of Charles Sanders Peirce (1931-1935) is taken as a 
foundation for reconstructing thinking processes and mental structures by using an 
interpretative approach. The sign model of Peirce has been applied successfully by 
some researchers in mathematics education (e.g. Hoffmann, 2003; Presmeg, 2006; 
Schreiber, 2012; Bikner-Ahsbahs, 2006).  

In the next section, I will show how Peirce’s triadic model can serve as a basis for a 
reconstruction of thinking processes and mental structures.  



The triadic sign model of Peirce 

Reconstruction means to interpret students’ interpretations that are constructed and 
applied while working on a task. An important aspect of a student’s thinking process 
is the process of interpreting signs. In order to structure a student’s process of 
interpreting, Peirce’s sign model is used. Peirce describes the triadic sign model in 

the following way:  

 “A sign, or representamen, is something which stands 

to somebody for something in some respect (…). It 

addresses somebody, that is, creates in the mind of that 

person an equivalent sign or perhaps a more developed 

sign. That sign which it creates I call the interpretant of 

the first sign. The sign stands for something, its object. 

It stands for this object not in all respects, but in 

reference to a sort of idea, which I have sometimes 

called the ground of representamen” (Peirce, CP 2.228). 

According to Peirce, a sign is an external representation that is visible, hearable, or 

perceptible in some way. The interpretant describes an internal representation that is 

induced by the sign and can become explicit. Concerning the term object, Peirce 
differentiates between the ‘immediate’ and the ‘dynamic object’ (Hoffmann, 2005). 
The immediate object is to be understood as the object to which the interpretant of the 
sign refers. Thus, the immediate object describes a special view towards the sign. 
“Immediate objects are neither obvious nor visible, but they can be reconstructed (as 
hypotheses) and verified through further data” (Bikner-Ahsbahs, 2006, p. 163). 
Unlike the immediate object, the dynamic object would emerge after all possible 
interpretations of its sign. These interpretations do not depend on individual views. 
Thus, the dynamic object is kind of a limit-object. 

The frame as a foundation of Peirce’s triad 

Hoffmann (2005) describes the difference between a person working on a familiar 
sign and the same person working on a sign yet new to him. While interpreting a new 
sign, the focus is on the sign itself as problematic. While working on a familiar sign, 
persons “conflate them with the phenomenon itself” (Roth and Bowen, 2003, p. 468 
as cited in Hoffmann, 2005, p. 35), as they possess “experience” (Hoffmann, 2005, p. 
39) concerning the sign. 

Schreiber (2012) does not only use the term ‘experience’, but explains that the 
interpretant in Peirce’s triad is “determined by the concepts, theories, habits, and 
skills of the observer” (p. 7), “which are given mentally or physically” (p. 7). This is 
what Peirce defines as ‘ground of representamen’ or ‘idea’ (see quotation of Peirce 
above). Mentally represented concepts and theories imply the way in which single 
ideas of a concept or a theory refer to each other. It is in this sense that Skemp’s 
approach of mental structures can be linked to Peirce’s theory. Peirce’s ground of 
representamen includes the mental structure of an individual. It influences individual 

Figure 1: Triad of Peirce 



construction of interpretants because “each individual creates interpretants against the 
background of his or her own subjective interpretation experiences and under a 
specific perspective” (Schreiber, 2012, p. 7). The interpretants depend on the 
individual’s ground of representamen.  

The chaining of single triads 

The strength of Peirce’s triadic model lies in describing processes in which new ideas 
are constructed. This construction is an ongoing process in which an interpretant of a 
sign becomes explicit and serves in turn as a sign of a further triad (Peirce, CP 2.303). 
Presmeg (2006) called this process “chaining” (p. 169). 

In the processes that I have reconstructed, the interpretants often do not only refer to 
the previous sign, but to groups of triads that previously occurred.  

METHODOLOGICAL TOOL  

Sample and data collection 

The sample of the whole study consists of 15 mathematics students, whereby in this 
paper I only look at two mathematics student, Peter and Mike, to exemplify the 
analysing tool. Peter and Mike took part in the lectures and tutorials of the linear 
algebra course in 2010/11, but had to take part again in 2011/12 (their third semester) 
because they failed the final examination. They participated voluntarily in an 
additional workshop (four sessions, main topics: vector spaces, basis). The lectures, 
tutorials, and workshop were taught by different teachers with individual ways of 
teaching. This is why Peter and Mike received various presentations of basis. 

The data was collected about four weeks after the final examination in 2012. This 
time was chosen because I was interested in the concepts Peter and Mike were able to 
retain for a longer period of time. In a face to face situation Peter was given a task in 
written form (see fig. 2). He had unlimited time to work on this task by himself. So, 
this was an individual and active process of construction in which Peter shows on 
which conceptual aspects he focuses. The interviewer did not influence this part. 
After working on this task Peter was asked to explain his procedure to the 
interviewer. This was a kind of retrospective think aloud. In this part, Peter reflects on 
his results and investigates their viability. Moreover, the interview offers the 
possibility of validating the written data. The same procedure was carried out with 
the student Mike (and the other 13 students). 

Ambiguities were expected because students could keep their written argumentation 
very short or express themselves unclearly. This was experienced in a pilot study. 
Thus, the interviewer’s role is to act warily in asking and to contain herself. The 
intention is not to arrive at a solution as quickly as possible. Thus, a semi-structured 
clinical interview was used to obtain data. The data allows making well-founded 
assumptions about individual thinking processes and activated mental structures. 

The written survey part of Peter and Mike took about ten minutes; the interviews took 
each about 20 minutes. The whole session was videotaped. The same procedure was 



U =	��xyz	 ϵ	ℝ³	|	2x = z� 	⊂ 	ℝ³ is given. 

a) Declare a basis of U. 
b) Describe in detail: How did you go on? 

undertaken with the students working on two other tasks concerning the concept of 
basis in other domains and representations, but this is not taken into account in this 
paper. Peter and Mike are chosen from the whole sample because their solving 
processes of only one task offer to show different kinds of connections in the mental 
structures, and because their ways of solving offer a comparison.  

A mathematical task and possible approaches 

A task given to the students is shown in figure 2.  

 

 

 

 

Figure 2: Mathematical task given to the students 

In the following, approaches of ways of solving the task are briefly pointed out. An 
approach to solve the task is to choose a vector in U and complete it to a basis by 
focusing on linear independence. Another approach can focus on linear combination 
by separating (x, y, 2x) according to variables. A starting point could also be to 
recognise the dimension of U and figure out the number of basis vectors. This could 
be done by noticing that the equation 2x = z geometrically describes a plane in ℝ³ or 
by noticing that the condition 2x = z reduced ℝ³ to dimension two. These are just 
examples od ideas; of course combinations of the ideas provide adequate approaches 
as well. 

The task is particularly convenient for the reconstruction of mental structures because 
it complies with the following aspects: The task challenges the students to apply their 
knowledge conceptually, but also just deals with familiar aspects. The notation of the 
vector space U is typical and was used in lectures, tutorials, and in the workshop. The 
task offers various ways of solving. Several connections among ideas of concept can 
be applied. This is why every student should be able to get access to work on the task 
at all. There is not just one special idea that needs to be remembered. Moreover, a 
solution is not available by applying memorised calculations, but refers to conceptual 
ideas. To put it in a nutshell, the task is rich and simple at the same time. 

DATA ANALYSIS AND RESULTS  

In a first step, the students’ ideas were analysed by using triads. Long chains of triads 
arise from the whole analysis. They structure the students’ thinking processes. The 
presented analysis consists of short parts removed from the long chains. These 
examples show the reconstruction of conceptual aspects in a laudable fashion. In a 
second step, chains become condensed. This process results in the reconstruction of 
mental structures, which is presented in a net. This is the reconstruction of students’ 
activated mental structure. The focus is on conceptual understanding of the concept 



of basis. In the original data, all vectors were written as column vectors. In the 
following I will use row vectors instead of column vectors because it saves space. 

The case of Peter 

When Peter starts working on the task, he concentrates on the condition 2x = z, 
which is given in U. He uses it when creating (1,1,2) and (2,0,4) as possible basis 
vectors. Then the following interpretant I5 (see table 1) is mentioned.    

Triad (T) Sign (S) Interpretant (I) Immediate Object (O) 
5 … Peter: “Basis vectors need to be 

linear independent.”  
linear independence of a set of 
basis vectors is an essential 
condition for a basis 

6  Peter: “This is why I choose one 
here and zero there (points at 
second components in created 
vectors).” 

effect of 0-component 
concerning linear independence 

Table 1: Example 1 of reconstructed triads from Peter’s thinking process 

Concerning I5 the reconstructed immediate object is O5. Peter associates this object 
with the concept of basis. Peter’s interpretant I5 serves as a new sign (S6), which is a 
part of the next triad. This sign S6 serves to create a next idea, the interpretant I6. The 
reconstruction of the immediate object O6 is based on I6. In I6 Peter gives an 
indication of a part of his concept of linear independence. He applies the concept of 
linearly independence by using the effect of a vector component that is zero. In the 
following, Peter assumes (wrongly) the number of basis vectors to be three. He refers 
to ∈ ℝ³ in the task and has the opinion that the dimension of every element in the ℝ³ 
is three. Then he adds (1,2,2) as a third vector to his basis. After a few seconds he 
speaks out I20 in table 2. 

T S I O 
20 … Peter: “This one is wrong (eliminates 

(1,2,2) from the set of basis 
vectors).” 

The set consisting of (1,1,2); (2,0,4) and 
(1,2,2) is not a basis. (1,2,2) is not an 
element of Peter’s basis. 

21  Peter: “I can span (1,2,2) with the 
other two vectors. If I multiply 
(1,1,2) by two, divide (2,0,4) by two 
and subtract this from this, I get this 
one.” (points at vectors) 

‘Not being linear independent’ is used as 
being able to generate vectors from each 
other by combining linearly in the head. 

�122� = 2 ∙ �112� − �
204� : 2 

Table 2: Example 2 of reconstructed triads from Peter’s thinking process 

Peter uses the ‘linear independence’-feature again, but refers to another facet than in 
I6: The possibility to generate a basis vector from the others by combining them 
linearly. This brings him to reconsider his preliminary basis because basis vectors are 
generable from others. He uses the concept of linear combination flexibly to argue 
(I21). Peter adds another third vector and recognises again that the set of basis is not 
linear independent. Then he gets the idea that two basis vectors will suffice. He refers 



to the subsigns ∈ �³ in the task again and remembers that there are planes in the �³. 
Moreover, only two basis vectors are necessary to span planes (which are vector 
spaces). His idea about two basis vectors is just an assumption until he uses the 
‘spanning set’-feature of a basis. He convinces himself that his basis consists of 
(1,1,2) and (2,0,4) by combining them linearly and focusing on relations among their 
components. Figure 2 shows Peter’s activated mental structure when he is solving the 
task.  

 

Figure 2: Reconstruction of Peter’s activated mental structure concerning basis  

The connection between basis and linear independence is just mentioned in T5. The 
connections based on linear independence (see figure 2) are rich in content. This 
enriches the connection between basis and linear independence, too. The connection 
between ‘number of basis vectors’ and ‘dimension…’ is dashed because the concept 
of dimension is not used adequately in the context of this task. The inscriptions 
written at the connection lines declare the number of the triad from which the 
connection results. Thus, the net offers a look at the order of the problem solving 
process and the conceptual priorities of Peter. Peter focuses on linear independence. 

The case of Mike 

Mike mentions that a basis is a linear independent spanning set. Then he focuses on 
the part of linear independence. He applies a relation between determinant and linear 
independence which is as follows: det� � ! 0	⟹ vectors in A are linearly 
independent. This relation implies A to be a nxn-matrix.  In the context of the Mike’s 
idea A is a 3x3-matrix. He checks if the column vectors of A are basis vectors. Mike 
applies the relation to four tries of basis sets consisting of (1,0,2), (0,1,0), and a third 
varying vector. Thereby, he does not analyse any effect of varying his assumed basis 
vectors. His focus is on the carrying out of the procedure. Using the relation as a very 
calculus procedure is not productive here. This is why the connection line is dashed 
in figure 3. Mike cannot conclude a reason why he will never find three basis vectors. 
He is not successful in finding three basis vectors and has no further access to linear 
independence. This is why he concludes that the two basis vectors (1,0,2) and (0,1,0) 
will suffice. The interviewer asks Mike to check if the two vectors build a basis. Then 
Mike continues with I27 (see table 3). 



T S I O 
27 … Mike: The function of basis vectors is 

„to span U. (…) So, I have to prove if 
my vectors are a spanning set.” 

A basis needs to be a spanning set. 

28  
Mike writes: span (�102� , �

010�) 
concretion of idea of spanning set to 
the context 

29  Mike: “I don’t know. This is the span. I 
don’t know what can be spanned with 
it. That’s beyond me.” 

The representation of the span in I28 
is not filled with meaning in this 
problem solving context. 

30  Interviewer: “Linear combination, do 
you remember this?” 

The idea of linear combination is 
offered. 

31  Mike: “I heard about it, but I can’t 
write anything down.” 

Linear combination cannot be used to 
create any idea. 

Table 3:  Example 3 of reconstructed triads from Mike’s thinking process 

Mike refers to the ‘spanning set’-feature of basis. He applies it to the context of the 
task. The next interpretant I28 arises from previous thoughts. Mike paraphrases I27 
by using the symbolic notation of span. Moreover, he concretises his idea by inserting 
his own assumed basis vectors into the span. The symbolic notation of span seems to 
be an empty notation for Mike (see I29 and O29). The interviewer offers the idea of 
linear combination in I30. I31 shows that Mike cannot use it to create any ideas to go 
on solving the problem. There is no connection between the symbolic notation of 
span and linear combination. This is why the relation between span and linear 
combination is drawn as a ‘disconnection-line’ in figure 3. 

 
Figure 3: Reconstruction of Mike’s activated mental structure concerning basis 

The connection between basis and linear independence is just mentioned in T10. In 
Mikes further problem solving process (see connections arising from linear 
independence in figure 3) it is noticeable that this connection is not as substantial as 
the one in Peter’s reconstructed mental structure. This also applies to Mike’s 
connection to spanning set. Peter and Mike both focus on linear independence in the 
solving process and refer to spanning set later. Peter is able to acquire a possible 



solution. He convinces himself by considering justifications. However, Mike’s 
capacity to act is limited and he cannot justify his set of vectors to be a basis of U.   

FINAL REMARKS 

In this paper I present my analysing tool. It is based on the semiotic theory of Peirce. 
The analysing tool allows describing processes of problem solving in a structured and 
detailed way. The processes are described by chaining triads. The chains serve as a 
foundation for the reconstruction of students’ mental structures that are represented in 
a net. 

Outlook: This procedure is carried out with 15 students and three tasks each. I am 
interested in understanding the students’ mental structure in a more profound way. I 
plan to identify the ideas of basis the students adapted to their mental structure and 
establish relationships with the teaching concepts of lectures, tutorials, and the 
workshop. I will make up types of reconstructed mental structures explicit. By 
comparing the mental structures, it will be interesting to have a look at the differences 
between the structures of successful students and the ones who are less successful.  
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