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Abstract. In this paper | present my theoretical tool forcoastructing students’
mental structures and my application of the toodjualitative data analyses. The tool
Is based upon Peirce’s semiotics. The data is téian clinical interviews, in which
mathematics students were given tasks dealingthéltoncept of basis. The aim is
to reconstruct students’ individual mental struesiconcerning this concept.
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AIM OF THE PAPER

The theory of linear algebra is characterised byhigh degree of interconnections
between concepts. The concept of basis, for exangldirectly connected to the
concept of linear independence and the conceptspfaning set. Both are linked as
defining conditions to basis. These concepts referother concepts — linear
combination and span — so that one can with goasbrestate that basis is a concept
of higher order. Understanding the concept of biagdies that one has a high ability
to connect ideas.

The research questions of this paper are as falldwkich individual mental
structures of the concept basis of a mathematiuest can be reconstructed when
students solve a particular task concerning thpgcto Additionally, this leads to the
guestion: How can a person’s mental structure bmonsructed empirically?
According to this, | demonstrate my theoreticall ttmy analysing students’ mental
structures. | apply the tool via examples to thigkprocesses of students who are
working on a task. Then the reconstructed thinkingcesses are condensed in a net
by focusing on the individual’'s mental structuretlod concept of basis. Before doing
so, | give a literature review of previous studiesling with students’ difficulties in
advanced mathematics.

STUDENTS’ DIFFICULTIES IN LINEAR ALGEBRA

Several studies are dealing with students’ diftiesl of the conceptual nature of
linear algebra. Sierpinska (2000) states that quscare not used precisely and are
not well-conceived. Moreover, students strugglénterpret signs in definitions and
to use them for the construction of contextual rakestructures. Several researchers
of the MAA-Notes (Carlsoret al., 1997) report that their students are able to
reproduce procedures in known contexts successfally that they often fail to
understand the meaning behind the procedures. Btand Thomas (2010) tie their
study in with this aspect by trying out a framewéok teaching the concept of basis



(and other concepts) that emphasises the embosgpttaof basis. Their aim was to
help students enrich their understanding. “The Itesof this study show that a
number of the students tended to prefer to worlcgutarally“ (p. 186). Maracci
(2008) shows that students conceived of linear aoations more as processes than
as objects (in terms of Sfard’s process-objectiyaBritton and Henderson (2009)
described students’ difficulties in dealing withetltoncept of closure. Students
struggled with applying the formal concept of ateespace to the algebraic notation
in a task. Furthermore, many of the difficultiestttstudents experience in linear
algebra are presented in detail in Dorier et £10(B. These studies all highlight that
students struggle with the conceptual nature ofstietly formalised and abstract
theory of linear algebra.

MENTAL STRUCTURES AND UNDERSTANDING

Several authors describe levels of learners’ coostm of concepts (hierarchical or
otherwise) (e.g. Vollrath, 1984Vinter, 1983; Harel, 1997). All have in common that
it is essential to connect single ideas for undeding a concept. This corresponds to
psychological views (e.g. SkempP76; Sweller, 2006). According to Skemp (1976)
pairing single ideas with concepts, by connecthmg, results in a construction of a
new idea, which he calls a “relation” (p. 37). Adtsformation” (ibid., p. 37) is
applied to an idea and describes a function of ittea. The entire process of
connecting and transforming ideas results in atcoctson of a complex structure.
“The study of structures themselves is important part of mathematics; and the
study of the ways in which they are built up, aaoddtion, is at the very core of the
psychology of learning mathematics” (ibid., p. 39).

A mental structure is known as “schema” (ibid. 3p). It is the “major instrument
(...) for solving new problems” (ibid., p. 43) and fine formation of concepts that
are yet new. Based on mental structures, Skempefetinderstanding something as
being able to assimilate it into an appropriate t@eschema. Understanding is
subjective. | assume that an individual's mentauctire has to be actively
constructed by the individual. Information givenhion or her in the form of external
representations needs to be constructed by theidodi. In mathematics, such a
construction of mental structures takes place midg with signs. Thus, | combine
the cognitivistic constructivism approach with gemiotic approach.

THEORETICAL TOOL — ASPECTS OF PEIRCE’S SEMIOTICS

The triadic sign model of Charles Sanders Peirc@3141935) is taken as a
foundation for reconstructing thinking processed arental structures by using an
interpretative approach. The sign model of Peirag Ibeen applied successfully by
some researchers in mathematics education (e.gmiioh, 2003; Presmeg, 2006;
Schreiber, 2012; Bikner-Ahsbahs, 2006).

In the next section, | will show how Peirce’s timdhodel can serve as a basis for a
reconstruction of thinking processes and mentatsires.



The triadic sign model of Peirce

Reconstruction means to interpret students’ inetgpions that are constructed and
applied whileworking on a task. An important aspect of a student’s thinking pssce
is the process of interpreting signs. In order ttmcture a student's process of
interpreting, Peirce’s sign model is us@®dirce describes the triadic sign model in
the following way:

“A sign, or representamen, is something which stands
to somebody for something in some respect (...). It
addresses somebody, that is, creates in the mind of that
person an equivalent sign or perhaps a more developed
sign. That sign which it creates I call the interpretant of
the first sign. The sign stands for something, its object.
object interpretant It stands for this object not in all respects, but in
reference to a sort of idea, which I have sometimes
Figure 1: Triad of Peirce  called the ground of representamen” (Peirce, CP 2.228).

sign/representamen

According to Peirce, a sign is aRrternal representation that is visible hearable, or
perceptible in some way. The interpretant describes an internal representation that is
induced by the sign and can become explicit. Concerning the term object, Peirce
differentiates between the ‘immediate’ and the a@yic object’ (Hoffmann, 2005).
The immediate object is to be understood as thecobp which the interpretant of the
sign refers. Thus, the immediate object describepexial view towards the sign.
“Immediate objects are neither obvious nor visilblat they can be reconstructed (as
hypotheses) and verified through further data” (BikAhsbahs, 2006, p. 163).
Unlike the immediate object, the dynamic object ldoamerge after all possible
interpretations of its sign. These interpretatidosnot depend on individual views.
Thus, the dynamic object is kind of a limit-object.

The frame as a foundation of Peirce’s triad

Hoffmann (2005) describes the difference betwegreron working on a familiar

sign and the same person working on a sign yettadwm. While interpreting a new
sign, the focus is on the sign itself as problematrhile working on a familiar sign,

persons “conflate them with the phenomenon its@th and Bowen, 2003, p. 468
as cited in Hoffmann, 2005, p. 35), as they pos&egsrience” (Hoffmann, 2005, p.
39) concerning the sign.

Schreiber (2012) does not only use the term ‘egpes’, but explains that the
interpretant in Peirce’s triad is “determined b tboncepts, theories, habits, and
skills of the observer” (p. 7), “which are given maly or physically” (p. 7). This is
what Peirce defines as ‘ground of representamerider’ (see quotation of Peirce
above). Mentally represented concepts and theamply the way in which single
ideas of a concept or a theory refer to each othes. in this sense that Skemp’s
approach of mental structures can be linked tocEsirtheory. Peirce’s ground of
representamen includes the mental structure ofidimidual. It influences individual



construction of interpretants because “each ind@idareates interpretants against the
background of his or her own subjective interpretatexperiences and under a
specific perspective” (Schreiber, 2012, p. 7). Theerpretants depend on the
individual’s ground of representamen.

The chaining of single triads

The strength of Peirce’s triadic model lies in d#msig processes in which new ideas
are constructed. This construction is an ongoirmggss in which an interpretant of a
sign becomes explicit and serves in turn as ad@ignfurther triad (Peirce, CP 2.303).
Presmeg (2006) called this process “chaining” §2)1

In the processes that | have reconstructed, tleepratants often do not only refer to
the previous sign, but to groups of triads thatioesly occurred.

METHODOLOGICAL TOOL
Sample and data collection

The sample of the whole study consists of 15 ma#tiesstudents, whereby in this
paper | only look at two mathematics student, Pated Mike, to exemplify the
analysing tool. Peter and Mike took part in thetdees and tutorials of the linear
algebra course in 2010/11, but had to take parhag®011/12 (their third semester)
because they failed the final examination. Theytippated voluntarily in an
additional workshop (four sessions, main topicsteespaces, basis). The lectures,
tutorials, and workshop were taught by differeracteers with individual ways of
teaching. This is why Peter and Mike received veipresentations of basis.

The data was collected about four weeks after it £xamination in 2012. This
time was chosen because | was interested in theeptsPeter and Mike were able to
retain for a longer period of time. In a face todaituation Peter was given a task in
written form (see fig. 2). He had unlimited timewerk on this task by himself. So,
this was an individual and active process of caosion in which Peter shows on
which conceptual aspects he focuses. The intervieliek not influence this part.
After working on this task Peter was asked to drplais procedure to the
interviewer. This was a kind of retrospective thai&ud. In this part, Peter reflects on
his results and investigates their viability. Moren the interview offers the
possibility of validating the written data. The saprocedure was carried out with
the student Mike (and the other 13 students).

Ambiguities were expected because students cowdd Keeir written argumentation
very short or express themselves unclearly. This aiperienced in a pilot study.
Thus, the interviewer’s role is to act warily inkeey and to contain herself. The
intention is not to arrive at a solution as quiclly possible. Thus, a semi-structured
clinical interview was used to obtain data. Theadaliows making well-founded
assumptions about individual thinking processesamtidated mental structures.

The written survey part of Peter and Mike took alien minutes; the interviews took
each about 20 minutes. The whole session was dpedt The same procedure was



undertaken with the students working on two otlasks$ concerning the concept of
basis in other domains and representations, bsitighmot taken into account in this
paper. Peter and Mike are chosen from the wholepleainecause their solving
processes of only one task offer to show diffei@ndls of connections in the mental
structures, and because their ways of solving affeemparison.

A mathematical task and possible approaches
A task given to the students is shown in figure 2.

X
U= {(y)e R3 | 2x = z} c R3is given,
Z

a) Declare a basis of U.
b) Describe in detail: How did you go on?

Figure 2: Mathematical task given to the students

In the following, approaches of ways of solving thek are briefly pointed out. An
approach to solve the task is to choose a vectth and complete it to a basis by
focusing on linear independence. Another approachfoecus on linear combination
by separating(x,y, 2x) according to variables. A starting point couldoalse to
recognise the dimension of U and figure out the Imemof basis vectors. This could
be done by noticing that the equati&n= z geometrically describes a planeRa or

by noticing that the conditio@x = z reducedR? to dimension two. These are just
examples od ideas; of course combinations of teasgrovide adequate approaches
as well.

The task is particularly convenient for the recamsion of mental structures because
it complies with the following aspects: The tasklénges the students to apply their
knowledge conceptually, but also just deals withif@ar aspects. The notation of the

vector space U is typical and was used in lectuwstials, and in the workshop. The

task offers various ways of solving. Several cotines among ideas of concept can
be applied. This is why every student should be &blget access to work on the task
at all. There is not just one special idea thatdage be remembered. Moreover, a
solution is not available by applying memorisectakdtions, but refers to conceptual

ideas. To put it in a nutshell, the task is ricd ample at the same time.

DATA ANALYSIS AND RESULTS

In a first step, the students’ ideas were analysedsing triads. Long chains of triads
arise from the whole analysis. They structure tinelents’ thinking processes. The
presented analysis consists of short parts remdneed the long chains. These
examples show the reconstruction of conceptualcaspe a laudable fashion. In a
second step, chains become condensed. This prnesgts in the reconstruction of
mental structures, which is presented in a nets &hthe reconstruction of students’
activated mental structure. The focus is on conpinderstanding of the concept



of basis. In the original data, all vectors weratten as column vectors. In the
following I will use row vectors instead of colunaactors because it saves space.

The case of Peter

When Peter starts working on the task, he condestran the conditiorzx = z,
which is given in U. He uses it when creating @) Jand (2,0,4) as possible basis
vectors. Then the following interpretant 15 (sdaedl) is mentioned.

Triad (T) | Sign (S)| Interpretant (1) Immediate Oljé0)
5 Peter: “Basis vectors need to |dmear independence of a set|of
linear independent.” basis vectors is an essential

s condition for a basis

—+

Peter: “This is why | choose oneffect of 0-componen
here and zero there (points |@oncerning linear independence
second components in created
vectors).”

Table 1. Example 1 of reconstructed triads from Pedr’s thinking process

Concerning I5 the reconstructed immediate obje€@35s Peter associates this object
with the concept of basis. Peter’s interpretarddBres as a new sign (S6), which is a
part of the next triad. This sign S6 serves toteraanext idea, the interpretant 16. The
reconstruction of the immediate object O6 is baeadl6. In 16 Peter gives an
indication of a part of his concept of linear indadence. He applies the concept of
linearly independence by using the effect of amecomponent that is zero. In the
following, Peter assumes (wrongly) the number alidbaectors to be three. He refers
to € R? in the task and has the opinion that the dimensfogvery element in thiR3

Is three. Then he adds (1,2,2) as a third vectdngdiasis. After a few seconds he
speaks out 120 in table 2.

T |S|I O

20 | ... | Peter: “This one is wrong (eliminate3he set consisting of (1,1,2); (2,0,4) and
(1,2,2) from the set of basigl,2,2) is not a basis. (1,2,2) is not |an
vectors).” element of Peter’s basis.

21 Peter: “| can span (1,2,2) with thé\ot being linear independent’ is used|as

other two vectors. If | multiply being able to generate vectors from epch
(1,1,2) by two, divide (2,0,4) by twoother by combining linearly in the head.
and subtract this from this, | get thi

1 1 /2
one.” (points at vectors) f;) - (;) - (2) 2

Table 2: Example 2 of reconstructed triads from Pedr’s thinking process

Peter uses the ‘linear independence’-feature aainrefers to another facet than in
I6: The possibility to generate a basis vector fritte others by combining them
linearly. This brings him to reconsider his prelway basis because basis vectors are
generable from others. He uses the concept ofrliceabination flexibly to argue
(121). Peter adds another third vector and recegnaégjain that the set of basis is not
linear independent. Then he gets the idea thabtgss vectors will suffice. He refers




to the subsigns R? in the task again and remembers that there anepla theRs.
Moreover, only two basis vectors are necessarypam planes (which are vector
spaces). His idea about two basis vectors is jasassumption until he uses the
‘spanning set’-feature of a basis. He convincesskiithat his basis consists of
(1,1,2) and (2,0,4) by combining them linearly docusing on relations among their
components. Figure 2 shows Peter’s activated mstrtadture when he is solving the
task.

effect of a 0-componentis

basis vectors have
, ) ) <6 used correctly
dimension to verify 2x=z T—
of elements in the 3-dim. independence ~JILs¢ -

vector space is three
- ‘not linear independent’ % linear

>

R — as being able to generate combining
120 hasis vectors vectors from each other
. : J
a plane in R? needs (= dimension of ~ T3 . - . .
two basis vectors vector space) spanning ——<___linearly combining of basis vectors with

set focus on structure of the vector space

Figure 2: Reconstruction of Peter’s activated mentastructure concerning basis

The connection between basis and linear indepeedenast mentioned in T5. The
connections based on linear independence (seesfiguare rich in content. This
enriches the connection between basis and linel@pendence, too. The connection
between ‘number of basis vectors’ and ‘dimensions. dashed because the concept
of dimension is not used adequately in the contéxthis task. The inscriptions
written at the connection lines declare the numbfethe triad from which the
connection results. Thus, the net offers a lookhatorder of the problem solving
process and the conceptual priorities of PeteerRetuses on linear independence.

The case of Mike

Mike mentions that a basis is a linear independpanning set. Then he focuses on
the part of linear independence. He applies aioeldtetween determinant and linear
independence which is as followstet(4) # 0 = vectors in A are linearly
independent. This relation implies A to baxa-matrix. In the context of the Mike’s
idea A is a3x3-matrix. He checks if the column vectors of A aasis vectors. Mike
applies the relation to four tries of basis setsseting of (1,0,2), (0,1,0), and a third
varying vector. Thereby, he does not analyse afeciedf varying his assumed basis
vectors. His focus is on the carrying out of thegadure. Using the relation as a very
calculus procedure is not productive here. Thiwhy the connection line is dashed
in figure 3. Mike cannot conclude a reason why lienever find three basis vectors.
He is not successful in finding three basis vectord has no further access to linear
independence. This is why he concludes that thebtsis vectors (1,0,2) and (0,1,0)
will suffice. The interviewer asks Mike to checHlie two vectors build a basis. Then
Mike continues with 127 (see table 3).



T |S]I O

27 | ...| Mike: The function of basis vectors |[i$\ basis needs to be a spanning set.
,{0 span U. (...) So, | have to prove|if
_my vectors are a spanning set.”

28 | £ _ 1\ /0 concretion of idea of spanning set|to
Mike writes:span (0)(1) the context

2/ \o

29 Mike: “I don't know. This is the span.|IThe representation of the span in |28
don’'t know what can be spanned wijtis not filled with meaning in this
_it. That's beyond me.” problem solving context.

30 | #|Interviewer: “Linear combination, doThe idea of linear combination |is
you remember this?” offered.

31 Mike: “I heard about it, but | canjtLinear combination cannot be used to
write anything down.” create any idea.

Table 3: Example 3 of reconstructed triads from Mke’s thinking process

Mike refers to the ‘spanning set’-feature of basis. applies it to the context of the

task. The next interpretant 128 arises from preyithoughts. Mike paraphrases 127
by using the symbolic notation of span. Moreoverchncretises his idea by inserting
his own assumed basis vectors into the span. Tinedic notation of span seems to
be an empty notation for Mike (see 129 and O29k Trterviewer offers the idea of

linear combination in 130. I31 shows that Mike canhase it to create any ideas to go
on solving the problem. There is no connection ketwthe symbolic notation of

span and linear combination. This is why the retatbetween span and linear
combination is drawn as a ‘disconnection-line’igiufe 3.

special feature: i
71118 calculus procedure

det(A) * 0 = e . .
I|near linear independence without reflection
independence
& mnofurtheraccess linear
combination
basis vectors spanning (emptyword)
have to verify set T2y
Ix=7 ———_functionof  T28f 1y /0 )\\{m
. _  span({O0],f1
basis: span U AT

as a notation

Figure 3: Reconstruction of Mike’s activated mentalstructure concerning basis

The connection between basis and linear indeperdenjcist mentioned in T10. In
Mikes further problem solving process (see conpasti arising from linear
independence in figure 3) it is noticeable thas tonnection is not as substantial as
the one in Peter's reconstructed mental structlites also applies to Mike’s
connection to spanning set. Peter and Mike botbdamn linear independence in the
solving process and refer to spanning set lateterRe able to acquire a possible



solution. He convinces himself by considering fusdtions. However, Mike’s
capacity to act is limited and he cannot justify et of vectors to be a basis of U.

FINAL REMARKS

In this paper | present my analysing tool. It isdxhon the semiotic theory of Peirce.
The analysing tool allows describing processesablpm solving in a structured and

detailed way. The processes are described by dgatriads. The chains serve as a
foundation for the reconstruction of students’ na¢structures that are represented in
a net.

Outlook: This procedure is carried out with 15 stoid and three tasks each. | am
interested in understanding the students’ mentattire in a more profound way. |
plan to identify the ideas of basis the studentegp#atl to their mental structure and
establish relationships with the teaching conceptdectures, tutorials, and the
workshop. | will make up types of reconstructed takrstructures explicit. By
comparing the mental structures, it will be intéresto have a look at the differences
between the structures of successful studentshendrtes who are less successful.
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