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This paper addresses the design of teaching to promote engineering students’ 
conceptual understanding of mathematics, and its outcomes . Within a developmental 
research approach, inquiry-based tasks have been designed and evaluated, through 
the use of competencies proposed for their potential to promote conceptual learning. 
A sociocultural frame draws attention to interactions between different cultural 
elements to address challenges to teaching relating to student perspectives and 
learning outcomes. The paper recognizes tensions between design of inquiry-based 
practice and the outcomes of that practice, and acknowledges limitations in what 
research to date has revealed in relation to research questions. 
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SETTING THE SCENE 

In this paper I focus on the development of mathematics teaching at university level, 
taking as an example the ESUM project (Jaworski & Matthews, 2011) in which an 
innovation in the teaching of basic mathematics to first year engineering students 
(n=48) was studied. Centrally the ESUM project involved design of teaching using 
inquiry-based tasks and small group activity within a GeoGebra environment. Here, 
the goal of teaching development was the design and practice of teaching in ways that 
encourage/promote students’ conceptual understanding of mathematics rather than 
understanding that is instrumental or procedural (Skemp, 1976; Hiebert, 1986). 

One finding from ESUM was the difficulty of discerning students’ conceptual 
understanding, or mathematical meaning making. The focus of this paper is how to 
address this difficulty. A (draft) report from the SEFI (Société Européenne pour la 
Formation des Ingénieurs) Mathematics Working Group (2012) recommends a 
competence approach to designing mathematics teaching for engineering students as 
described by Niss, (2003). The following research questions are addressed: 

RQ1) When a (developmental research) project seeks to enhance students’ conceptual 
understanding of mathematics, how can we gain insights to students’ understanding? 

RQ2) How can we characterise understanding in ways which aid its creation? (In what 
ways can the SEFI/Niss competence framework aid characterisation?) 

My approach to addressing these questions is to draw on findings from ESUM, 
alongside (further) analysis of ESUM data using the SEFI framework. I consider the 
design of inquiry-based tasks or questions, taking, as an example, the topic of 
functions which was central to teaching in the ESUM project. 
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In the ESUM project, a literature search on innovative modes of teaching (in HE 
STEM-related subjects1), showed that the use of inquiry-based approaches is often 
conceptualised within a constructivist theoretical frame (Abdulwahed et al, 2011). As 
such, learning is considered from individual cognitive perspectives, possibly with a 
social dimension (e.g., Ernest, 1991). In ESUM, research findings have pointed to 
tensions and contradictions between the design of teaching and students’ perspectives 
on learning and teaching (Jaworski, Robinson, Matthews & Croft, 2012). This has 
required us to deal with complexity within differing cultures and within institutional 
constraints, for which a sociocultural theoretical frame makes more sense than a 
frame of individual cognition. Thus, we see mathematics knowledge growing in 
social settings through mediational processes and the use of tools such as inquiry-
based tasks and approaches to teaching (Schmittau, 2003; Wertsch, 1991).  

A DEVELOPMENTAL AND INQUIRY-BASED APPROACH 

The ESUM study employed a developmental methodology in which research both 
studied developmental practice and contributed to development (Jaworski, 2003). A 
team of three teacher-researchers (insiders) designed and taught the module, with 
continuous reflection and review leading to modifications during practice and new 
insights for the next year of teaching. A research assistant (outsider) collected data 
and analysed data together with the teaching team. Analyses informed future 
teaching. The developmental methodology incorporated an inquiry-based approach 
involving nested layers of inquiry (A, B & C with ABC) with students’ learning 
of mathematics at the centre: Inquiry in mathematics (A) involves students in learning 
and understanding mathematics through inquiry. Inquiry in developing mathematics 
teaching (B), involves questioning teaching approaches and the design of teaching, to 
understand the basis of teaching decisions and ways of improving teaching for better 
learning outcomes. Inquiry in layer (C) inspects the other two levels to gain insights 
to the developmental processes in both layers, and their outcomes (Jaworski, 2006). 
When inquiry practices are instituted or promoted within a group, an outcome can be 
the formation of an inquiry community, which can be seen to have all the hallmarks of 
a community of practice, as designated by Wenger (1998), except in one major 
respect. In Wenger’s terms, those involved in the community can be seen to have 
joint engagement, enterprise and repertoire; and their identities can be 
conceptualised as encompassing the use of imagination in charting personal 
trajectories of engagement, and alignment with the norms and expectations within the 
practice (Wenger, 1998). While it is impossible to be a part of a community of 
practice without aligning with its norms and expectations, one does not have to align 
uncritically. Uncritical alignment can result in perpetuation of practices which do not 

                                           
1 STEM – Science, Technology, Engineering and Mathematics. The ESUM project was funded through the Higher 
Education (HE) STEM programme by the Royal Academy of Engineering. Two case studies from the project can be 
found at http://www.hestem.ac.uk/resources/case-studies. 
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achieve the goals of practitioners – for example, alignment with certain forms of 
teaching practice, within a community of mathematics teaching, can result in student 
learning outcomes which are instrumental or procedural in nature, lacking conceptual 
depth. So, alignment needs to be critical – critical alignment – in which (established) 
practices are subject to critical questioning by the practitioners who engage with 
them. Critical alignment means looking critically at what we do as we engage in 
doing it (Jaworski, 2006) and is central to practice in the three layers A, B and C. In 
learning mathematics, critical alignment involves asking why? Why do we do things 
in certain ways: why this formula, why this procedure, why these relationships? 
Inquiry-based tasks and questions are designed to get student to address these whys. 

LEVELS OF COMPETENCY IN MATHEMATICS AND IN TEACHING 

I will now focus on competence and competency and their relation to the design and 
use of inquiry-based questions and tasks, with a view to addressing the given research 
questions and the ESUM main goal regarding conceptual understanding. Niss writes: 

Possessing mathematical competence means having knowledge of, understanding, doing 
and using mathematics and having a well-founded opinion about it, in a variety of 
situations and contexts where mathematics plays or can play a role (Niss, 2003 p.183) 

A mathematical competency is a distinct major constituent in mathematical 
competence: eight competencies have been identified in two groups. 

The ability to ask and answer questions 
in and with mathematics 

The ability to deal with mathematical language 
and tools 

1. Thinking mathematically 
2. Reasoning mathematically 
3. Posing and solving  

 mathematical problems 
4. Modelling mathematically 

5. Representing mathematical entities 
6. Handling mathematical symbols and formalism 

7. Communicating in, with and about  
 mathematics  

8. Making use of aids and tools  

Table 1: Mathematical competencies as expressed in SEFI (2012) 

The authors emphasise three dimensions for specifying and measuring progress in 
learning with respect to competency: 

Degree of coverage: The extent to which the person masters the characteristic aspects of a 
competency 

Radius of action: The contexts and situations in which a person can activate a competency 

Technical level: How conceptually and technically advanced the entities and tools are with 
which the person can activate the competence. 
These competencies seems to have synergy with inquiry-based learning and what we 
aimed for in the ESUM project, and they offer starting points for design of tasks and 
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evaluation of learning outcomes. Space here precludes a detailed account of each 
competency; I will rather clarify their meaning through application to task design. 

TASK DESIGN AND ANALYSIS 

When students emerge from schools and their A level2 courses, we know that their 
mathematical learning has often been of an instrumental nature (e.g., Artigue, 
Batanero & Kent, 2007; Hernandez-Martinez et al. 2011). Thus, as part of the school 
culture, they know how to, for example, apply rules of differentiation and integration, 
but have little conceptual understanding of the nature of functions or of limiting 
processes. In both of these areas research has pointed to conceptual difficulties that 
students experience (e.g., Cornu, 1991; Even & Tirosh, 1995). So, the demands of 
design within the university course are to create tasks which engage students with 
mathematics, some of which is already familiar to them, in ways which take them 
beyond school practices and into a university culture in which it is hard to progress 
without deeper understandings. 

The following two tasks (Table 1) were designed for these purposes. The first was 
used in a lecture at the beginning of our work on functions. In the second, the first 
part (a) was used in a lecture and the other parts (d-e) in a tutorial where students sat 
in groups of three or four each with a computer and access to GeoGebra software. In 
accord with design goals, and associated expectations of students’ engagement, I 
have analysed the tasks in terms of the eight mathematical competencies (see Table 
1). I also refer to competencies by a number in brackets, such as [3]. 

Analysis of Task 1 using the competencies 

Task 1was intended to open up discussion of functions. The lecturer offered the task 
and waited for students to write down two functions, meanwhile, walking round the 
lecture theatre and looking expectantly at students (and smiling, with eye contact) – 
the look implied “I expect you to do what I have asked you to do, not just to sit and 
wait for me to debrief the task”; the smile implied “I am friendly and approachable”.  

 Task  Competencies

1 Think about what we mean by a function and write down two 
examples. Try to make them different examples. 

1, 2,  
5, 6, 7 

2 In the topic area of real valued functions of one variable 

Consider the function f(x) = x2 + 2x  (x is real) 

 

a) Give an equation of a line that intersects the graph of this function 

(i) Twice (ii) Once (iii) Never (Adapted from Pilzer et al. 2003, p. 7) 

1, 2, 3,   
5, 6, 7 

                                           
2 A level courses means courses preparing students for “Advanced Level General Certificate of Education” a public 
examination qualifying students for study in Higher Education. These are high stakes examinations and schools are 
measured by their examination successes. 
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b)  If we have the function f(x) = ax2 + bx + c. 
What can you say about lines which intersect this function twice? 

1, 2,   
7, (8) 

c)  Write down equations for three straight lines and draw them in 
GeoGebra 

1, 2,  
5, 6, 7, 8 

d)  Find a (quadratic) function such that the graph of the function cuts 
one of your lines twice, one of them only once, and the third not at 
all and show the result in GeoGebra. 

1, 2, 3,  
7, 8 

e)  Repeat for three different lines (what does it mean to be different?)  1,2,3,5,6,7,(8) 

Table 2: Two tasks from ESUM, with associated competencies 

The task is open in nature. Students could write down any example they could think 
of. Since most students had studied A level mathematics, they had certainly 
encountered the term “function” and used functions. So for most students the task 
was accessible. It encouraged them to think [1]. To write down the function they had 
to use symbolism to represent the function [5, 6]. I argue that in writing down, they 
were already starting to communicate, and, in deciding on different functions, to 
reason mathematically [7,2]. After a suitable time, the lecturer continued, asking 
students to offer one of the ‘functions’ they had written, and writing these verbatim 
on the overhead projector. Initial contributions were made tentatively, the lecturer 
smiling encouragement and thanking the student, and many more then followed, thus 
overcoming some of the barriers to student contribution in a lecture. When a (long) 
list of offerings had been produced, the lecturer asked students to comment on the 
nature of what had been offered (importantly, a student who had offered any example 
was now anonymous). Some of the examples offered were as follows: y=x+3; y=x2; y 
= ex; x+y=4; f(x)=x+1. The majority were of the form “y=”. When asked to comment 
on ‘difference’ some students mentioned linear functions as opposed to quadratic 
functions, or exponential functions. Some queried x+y=4, stating that it is an 
equation, not a function. Very few used functional notation of the form ‘f(x)=’. When 
the lecturer added to the list y=5 and x=4, students were adamant that these are not 
functions. Thus, communication occurred between students and the lecturer [7], and 
students offered explanations and reasons for why an item was a function or not [2]. 
Students could see alternative offerings from their peers. For the lecturer, students’ 
responses to the task provided insights to their current knowledge/thinking about 
functions, and allowed some immediate challenge – for example, “what is the 
difference between a function and an equation?”, “why are y=5 and x=4 not 
functions?” – and to the formal definition of a function.  

In Task 1, students had to produce their own examples, leading to engagement, 
questioning, discussion and inquiry. Inquiry could be seen in the questioning which 
resulted, in consideration of what is a function and what is not a function, and in the 
mode of engagement in the lecture: students were expected to contribute, think, 
reason, argue, not to take some things for granted, and to deal with uncertain 
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situations (not everything will be presented as cut and dried, right or wrong). We can 
see this episode as the beginnings of creating an inquiry community.  

We see here some starting points in addressing RQ1, and a start to characterisation of 
understanding using the competencies (RQ2). We might ask how the three 
dimensions relating to competency might be used to evaluate students’ responses to 
the task.  

Analysing Task 2 using the competencies 

The first part of Task 2 (2a) was also presented in a lecture with a similar teaching 
approach to that described above. An analysis of this task suggests that: 

 The function is easy to sketch for students who have reached A level in school – it is 
easy to see lines which cross it in the three conditions [5] 

 Students have to talk to each other [7] 
 They have to think about equations for their lines [1] [3] [6]  
 They start to reason about the differences between the lines [2] 
 They have to give feedback to the lecturer and others in the cohort [2, 7] 

In the lecture, students were asked to write down the required equations and to 
discuss with a neighbour [1, 5, 6, 7]. After a short time, students’ suggestions were 
written on the OHP by the lecturer. Some students offered equations of parallel 
horizontal lines, such as y=1, y= -1, and y= -3. Others offered non-horizontal lines. 
One question which arose was how one can know that a non-horizontal line will cross 
the graph (or will not cross the graph). This provided opportunity for discussion, with 
some students disagreeing with others as to which lines will cross or not cross [1, 2, 
3]. Further graphical and algebraic activity resulted. One value of the use of software 
such as GeoGebra was demonstrated – the possibility to experiment with coefficients 
in equations and scales on axes to gain insights into relationships. Some students 
were able to offer algebraic reasoning, but it was not certain that all were able to 
understand this [6].  

It would have been valuable to spend more time on such activity, encouraging 
questions and explanations from students, but there was much further material to 
address in the lecture, and so not enough time to give to continuing the discussion. 
These are examples of contextual constraints. Here the lecturer learns from students’ 
responses and can consider how to plan differently for a future occasion, to give more 
time or not, to rearrange material or not. The lecturer also learned about 
interventions: where the lecturer’s question or explanation seemed to promote student 
engagement and where not; how to deal with mathematically incorrect assertions if 
no student offered a challenge. When students’ themselves offered a challenge, 
mathematical communication between students was strengthened with corresponding 
opportunities for learning. The lecturer became aware of actions which promoted or 
inhibited students offering such challenges.   
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Tasks for use in a tutorial 

Parts b) to e) of Question 2) were addressed in a tutorial. Typically a tutorial was 
related to material addressed in a recent lecture. Often a sheet of questions was 
provided, some questions offered practice and support in relevant areas of 
mathematics; others were inquiry-based questions in which exploration, questioning, 
discussion and justification were encouraged. Question (2) is an example of the latter: 
2b) requires students to generalise from (a), [1, 2, 7]; in 2c) students have to invent 
their own mathematical objects and use a technological tool [1, 2, 5, 6, 7, 8]; in 2d) 
they have to tackle an open-ended problem [1, 2, 3, 7, 8], and in 2e) they are required 
to generalise mathematically [1, 2 3, 5, 6, 7]. In (b) and (c), use of GeoGebra can 
provide opportunities to visualize and to generate a range of possibilities for 
consideration. 2d) is seriously challenging – even with use of GeoGebra it is not 
simple to generate the function, analytical thinking is required. In 2e) the question 
about what it means to be different is designed to promote thinking at more general 
levels and encourages movement towards conjecture and proof.  

In the tutorials, lecturer and a graduate assistant moved from group to group of 
students encouraging work on tasks and probing students’ mathematical thinking. It 
became clear that different groups engaged very differently: some taking on the 
mathematical challenges and some seeking quick and easy solutions. GeoGebra was 
used variously as a graphical display (with a screen full of indistinguishable graphs), 
a source of quick/easy answers to questions, or as a help in tackling challenging 
questions. While tutor and assistant encouraged the latter, they were aware of the 
other uses. Although their questions encouraged a more meaningful, mathematically 
in-depth use, it could be seen, when the tutor left the group, that some students 
returned to other uses or were tempted to use social networking sites or engage with 
email. Critical alignment for the tutor is seen in how to promote deeper engagement 
when former school practice and current student cultures acted in other directions.  

Data and Analysis 

Data collected from these events included the lecturer’s reflections: orally after a 
lecture or tutorial, and a written reflection each week addressing issues arising from 
the interpretation of teaching design in practice (critical alignment); the research 
assistant audio-recorded lectures and the oral reflections and kept observational notes 
from all events. After the end of the module (one semester) she and another colleague 
interviewed a selection of students. In addition, data was collected from student 
surveys and written project work. Data were analysed to address questions of 
students’ engagement and their experiences of inquiry-based tasks and use of 
GeoGebra. Data from written project work showed that students were aware of ways 
in which GeoGebra could contribute to their understanding. However, the following 
two responses, from focus group interviews, are indicative of student attitudes. 
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 I found GeoGebra almost detrimental because it is akin to getting the question and 
then looking at the answer in the back of the book. I find I can understand the graph 
better if I take some values for x and some values for y, plot it, work it out then I 
understand it … if you just type in some numbers and get a graph then you don’t 
really see where it came from. (Focus group 1) 

 Understanding maths – that was the point of Geogebra wasn’t it? Just because I 
understand maths better doesn’t mean I’ll do better in the exam. I have done less past 
paper practice. (Focus group 2) 

How dimensions of competency might interface with such findings is hard to see. 

MAKING SENSE OF STUDENT UNDERSTANDING 

In the above I have focused on analyses of the design of teaching, principally the 
design of inquiry-based tasks and an associated teaching approach to engage students 
with mathematics for conceptual understanding. I have used mathematical 
competencies to qualify or start to characterise ‘conceptual understanding’. I have 
suggested that students’ responses to this careful design have not been what we 
would ideally have liked; factors identified being institutional constraints, time, 
students’ school culture, students’ social culture. Student remarks such as those 
quoted led us to characterise student responses as ‘strategic’ (Jaworski & Matthews, 
2011). Students wanted the best possible grades and had clear ideas as to how this 
should be achieved; some of these ideas conflicted with the expectations of teaching, 
students expressed their own expectations on the nature of teaching (e.g., the teaching 
should focus more on graph plotting; there should be time given to practising past 
papers). Comments related to doing “better in the exam” suggested students’ valuing 
of a more instrumental approach to understanding with a perception that a more in-
depth understanding was unnecessary.  

We are aware that the existence and nature of an exam (worth 60%), whose style had 
changed little from that before the innovation, was not exactly in the spirit of inquiry-
based learning to encourage deeper understanding, although it might be seen to have 
synergy with dimensions of competency. We have considered replacing the exam 
with other forms of assessment, but institutional constraints have so far prevented 
this3. In written group project reports (worth 20%), understanding was demonstrated 
through responses to questions in which students had to pursue their own lines of 
inquiry and comment on the value of their use of GeoGebra. A typical response was: 

As a group we looked at many different functions using GeoGebra and found that having 
a visual representation of graphs in front of us gave a better understanding of the 
functions and how they worked. In this project the ability to be able to see the graphs that 

                                           
3 It is ironic that, in the exam at the end of the ESUM innovation, students’ scores were on average 10% higher than 
those of previous cohorts. We are not able to link this directly to the innovation, since data was not available to 
compare intake grades with those of previous cohorts. 
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were talked about helped us to spot patterns and trends that would have been impossible 
to spot without the use of GeoGebra.” [Group F – project report] 

However, observational data showed some students not engaging seriously with the 
more demanding questions in tutorials, and many attending more assiduously to the 
more routine exercises. It was clear that where groups were taking seriously the 
inquiry-based questions, discussion with the tutor proved encouraging and 
motivating. Unsurprisingly, groups which responded best in tutorials gained the 
higher marks in the assessed group project.  

In the above I have commented briefly on some of the key findings from our ESUM 
analyses. They reveal important insights into the sociocultural factors influencing the 
implementation of project design and its outcomes for students. Nevertheless, the 
nature of mathematical understanding remains elusive. Analyses using the 
competency framework have supported our design of tasks; apparent synergy 
between principles of inquiry and competency reinforce confidence in our didactic 
design. However, our research questions above are only partially addressed. The 
competency-based task analysis offers a form of characterisation (2a). The 
sociocultural analyses allow us to frame some of the obstacles to deeper insights into 
students’ understanding (e.g., students’ perceptions demonstrated in project writing in 
comparison to their views expressed orally in interview). The competencies and 
dimensions could offer a framework for the design and evaluation of tests or 
examinations, but we believe this would give us little more than a summative 
evaluation of the sort we have already from exam and test scores, albeit perhaps more 
detailed and specific. RQ2 -- How can we characterise understanding in ways which 
aid its creation? – is only partially addressed, and perhaps we need a better-focused 
question. What is it, exactly, that we are trying to characterise? So far we have 
reinforced our design principles and the elusive nature of discerning students’ 
mathematical understanding. We have juxtaposed design principles with sociocultural 
findings using activity theory to highlight inherent tensions or conflicts (Jaworski et 
al, 2012). Discerning tensions and conflicts is one step towards resolving them. 
Finding ways to characterise understanding is another. We still need to make the 
sociocultural findings active in our design so that we come closer to enabling the 
student understandings we seek. This requires us to go beyond competencies, while 
remaining aware of their contribution towards recognition of the mathematics for 
which we seek understanding. We are currently addressing teaching approaches that 
might have more success in changing students’ ‘strategic culture’. Since these are 
engineering students, discussion is taking place also with the engineering department. 
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