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The title of the paper paraphrases the title of the famous paper by Edwina Michener 

"Understanding understanding mathematics".  In our paper, we discuss what it 

means to "understand" the concept of equivalence relations between matrices. We 

focus on the concept of equivalence relations as it is a fundamental mathematical 

concept that can serve as a useful framework for teaching a linear algebra course. 

We suggest a definition of understanding the concept of equivalence relations, 

illustrate its operational nature and discuss how the definition can serve as a 

framework for teaching a linear algebra course.  

INTRODUCTION   

One of the major dilemmas that teachers of linear algebra face is whether to start with 

abstract concepts like vector space and then give concrete examples, or start with 

concrete applications like solving systems of linear equations and then generalize and 

teach more abstract concepts. Our personal preference is to start with systems of 

linear equations since they are relatively easy-to-understand and are connected to the 

students' high school experience. Unfortunately, for some students this only delays 

the difficulty of abstraction (Hazzan, 1999). The students also often tend to consider 

less and more abstract topics of the course as disjoint ones. Since the concept of 

equivalence relations appears both in concrete and abstract linear algebra topics, we 

think of equivalence relations as an overarching notion that can be helpful in 

overcoming these difficulties.  

In this paper we first suggest a review of topics, in which the notion of  equivalence 

relations appear in high school and in a university linear algebra course and then 

theoretically analyse what it means to understand this notion, in connection with the 

other linear algebra notions. For this purpose we suggest a definition of 

understanding the concept of equivalence relations in linear algebra and argue, by 

means of presenting mathematical tasks aimed at testing particular aspects of the 

definition, that it can be operationalized. The paper is concluded with suggestions for 

future empirical research.  

EQUIVALENCE RELATIONS 

Examples of equivalence relations known, latently, to high school students include 

equality of numbers and algebraic expressions, and congruence and similarity of 

geometric shapes. Enriched mathematics high school curriculum may also include 

congruence modulo in elementary number theory and equivalence of (systems of) 

equations.  



  

Equivalence relations between matrices are ubiquitous. Equivalence of systems of 

linear equations is usually the first time when a university linear algebra student 

explicitly encounters the concept (e.g., Berman & Kon, 2000; Carlson, Johnson, Lay 

& Porter, 1993; Hoffman & Kunze, 1972). The concept of row equivalence of 

matrices is introduced in this connection. 

 The concept of column equivalence of matrices is introduced for the sake of 

symmetry, and an experienced lecturer would emphasize that elementary row 

operations transform a system of equations to an equivalent one, whereas elementary 

column operations do not. Matrix equivalence naturally appears in connection with 

rank, matrix similarity – in connection with eigenvalues, and matrix congruence – in 

connection with quadratic forms. Figure 1 describes the logical-hierarchical 

connections between these types of equivalence relations. An arrow in the figure 

between a relation  and a relation   means that if relation   exists between two 

matrices, then so does relation  ; the matrices P  and Q  are invertible. 

 

Figure 1: Examples of matrix equivalence  

Other types of equivalence relations between matrices are restricted to complex 

matrices. These types are presented in Figure 2.  

 

1 TP P   

Consimilarity 
1

B P AP


 

Orthogonal similarity 
1B P AP , P - orthogonal 

* congruence 

B P AP 

Row equivalence 

B PA 

Column equivalence 

B AQ 

Matrix Equivalence 

B PAQ 

Congruence 
TB P AP 

Similarity 
1B P AP 

Unitary similarity 
1B P AP , P - unitary 

P is real P is unitary 

 

Figure 2: Equivalence relations of complex matrices  



  

As in Figure 1, the matrices P  and Q  are invertible, and a one-side arrow between a 

relation  and a relation   means that if relation  exists between two matrices, then 

so does relation  . A two-side arrow in Figure 2 between a relation    and a 

relation  , accompanied by condition  , means that under condition   the relations 

are the same. By an orthogonal matrix we mean a real matrix P  satisfying 1 TP P  . 

Note that in the condition 1 TP P   that accompanies the arrow between consimilarity 

and *congruence, the matrix P is not necessarily real. 

UNDERSTANDING EQUIVALENCE RELATIONS   

Michener (1978) accounts a mathematician's perspective of what it means to 

"understand" as follows: 

When a mathematician says he understands a mathematical theory, he possesses much 

more knowledge than that which concerns the deductive aspects of theorems and proofs. 

He knows about examples and heuristics and how they are related. He has a sense of 

what to use and when to use it, and what is worth remembering. He has an intuitive 

feeling for the subject, how it hangs together, and how it relates to other theories. He 

knows how not to be swamped by details, but also to reference them when he needs 

them. (p. 361) 

We apply this perspective to conceptualizing students' understanding in linear 

algebra. As will be evident shortly, our conceptualization of understanding is also 

stimulated by the work of Skemp (1976, 1986) on instrumental 

understanding/relational understanding.  

Generally speaking, we refer to understanding a concept in a given mathematical 

subject as the capability to provide different representations of the concept, link it to 

other concepts by logical-hierarchical relations, and apply it in central issues of the 

subject. Specifically, in the context of equivalence relations in linear algebra, we 

suggest the following definition:  

Understanding of an equivalence relation of matrices consists of:  

 Formal understanding – capability to recall (on demand or when needed in 

problem solving) its formal definition(s).  

 Instrumental understanding – capability to transform a matrix to an equivalent 

one.  

 Representational understanding – capability to recall (on demand or when 

needed in problem solving) properties of an equivalence class and capability to 

find simple representatives of the equivalence classes.  

 Relational understanding – capability to relate the relation to other concepts, 

including other equivalence relations (e.g., Figure 1 and Figure 2 above). 

 Applicational understanding – capability to identify (not necessarily to solve) 

problems in which the relation may be useful. 



  

Note that there is no hierarchical relation between the different types of 

understanding. For example, it is possible that a student may possess representational 

understanding without instrumental one, or vice versa. Also it is clear that each type 

of understanding has its own spectrum of deepness, from a basic to an advanced one. 

Deepness of understanding can be characterized in terms of available arsenal of 

relevant proofs, generic examples and problem-solving strategies.  For operational 

reasons, we consider the following levels of understanding. A basic level of formal 

understanding is when the student can recall the relevant definitions. In case that 

there are several definitions, the ability to prove that they are equivalent demonstrates 

an advanced understanding. The levels of instrumental understanding can be 

characterized by the fluency of performing the transformations. A student at a basic 

level of representational understanding can only recall simple representatives. A 

more advanced student can prove existence and uniqueness of the representatives.  A 

basic level of relational understanding presumes that a student knows how the 

equivalence relation relates to other concepts. A more advanced level is expressed by 

the ability to prove these relations. An advanced level of applicational understanding 

is when a student not only knows in which problems the concept may be useful, but 

also knows how to solve some of the problems. 

These definitions can be operationalized since each of the above types and levels of 

understanding can be evaluated by means of appropriate tasks. In the next section we 

give some examples. 

UNPACKING THE DEFINITION BY MEANS OF TASKS  

As examples we explain the five types of understanding for row equivalence, matrix 

equivalence and matrix similarity. In addition, for matrix equivalence, we show how 

formal, representational and applicational understanding can be evaluated by tasks. 

For matrix similarity we discuss the pedagogical consequences of the lecturer's 

decision to stress some types of understanding more than the others. We also discuss 

the potential of teaching orthogonal similarity for creating an overall picture of the 

course through promoting its relational understanding. 

Row equivalence 

Formal understanding: the students are capable of recalling that a matrix B  is row 

equivalent to a matrix A  if B can be obtained from A  by a finite number of 

elementary row operations. They should also know that this is the same as B QA , 

where Q  is invertible. 

Instrumental understanding: the students can perform elementary row operations and 

know how to transform a given matrix to a row equivalent one.  

Representational understanding: the students know that every matrix can be reduced 

to a row echelon form and is row equivalent to a unique matrix in a row reduced 

echelon form, and thus A and B  are in the same equivalence class if and only if they 

have the same row reduced echelon form.   



  

Relational understanding: the students are capable of associating row equivalence 

with systems of linear equations, can recall that row equivalent matrices have the 

same rank, but that the converse is not true, and that row equivalence implies matrix 

equivalence. The students also know that matrices of the same order are row 

equivalent if and only if they have the same row space.  

Applicational understanding: the students can recall that a system of linear equations 

can be solved by reducing the augmented matrix to a row equivalent row reduced 

matrix (Gauss elimination) or to its row reduced echelon matrix (the Gauss-Jordan 

method). More advanced applications include vector independence, finding a basis 

and matrix inversion. 

The concept of row equivalence is a basic concept and thus it is important that all 

students will develop all the five types of its understanding, at least at the basic level. 

Matrix equivalence 

The concept of matrix equivalence is less basic and it is not necessary to emphasize it 

in a very basic linear algebra course. However, in a more advanced course it makes 

sense to develop some of the following:   

Formal understanding:  the students recall that matrices A and B are equivalent if one 

can be obtained from the other by a finite number of elementary, row or column, 

operations, or, equivalently, if B QAP , where P and Q are invertible.  

Instrumental understanding: the students can perform row and column elementary 

operations. 

Representational understanding: the students know that every m n  matrix of rank 

r is equivalent to an m n  matrix of the form rI O

O O

 
 
 

, where rI is the r r identity 

matrix.   

Relational understanding: the students know that A , m nB F   (The  m n  matrices 

over the field F)  are equivalent if and only if they have the same rank, that 

equivalent matrices represent the same linear transformation, and that the row 

equivalence, column equivalence, similarity and congruence are special cases of 

matrix equivalence (see Figure 1).  

Applicational understanding: the students know that reducing a matrix to its simple 

representation rI O

O O

 
 
 

can be useful in problems involving rank. 

As an example, consider the following classical proof of the fact that for A , n nB F  , 

AB and BA have the same characteristic polynomial:  

Proof: Suppose rank A r n   (If r n , AB and BA are similar and thus have the same 

characteristic polynomial). Then A is equivalent to rI O

O O

 
 
 

 , i.e., there exist invertible 



  

matrices  P and Q such that rI O
PAQ

O O

 
  
 

. Let 1 1
C D

Q BP
E F

   
  
 

, where C is r r . 

Then 1 1 1
C D

PABP PAQQ BP
O O

    
   

 
, and 1 1 1

C O
Q BAQ Q BP PAQ

E O

    
   

 
. Hence AB  is 

similar to 
C D

O O

 
 
 

 and BA  is similar to
C O

E O

 
 
 

. The matrices 
C D

O O

 
 
 

 and 
C O

E O

 
 
 

have 

the same characteristic polynomial, and thus so do AB  and BA . 

In terms of understanding matrix equivalence, knowledge of the above proof requires 

basic level of formal and representational understandings, and an advanced level of 

applicational understanding. A lecturer interested in developing the applicational 

understanding of matrix equivalence may include this proof in the course. A lecturer 

who needs time for other purposes may use other proofs. We remark that the proof 

can be used for evaluating different types of understanding when divided into sub 

questions. For example, it can be represented as follows:  

Question A: Prove that an n n matrix A of rank r is equivalent to rI O

O O

 
 
 

, where rI is 

the r r identity matrix. 

Question B: Use the result of Question A to prove that for A , n nB F  , AB and BA have 

the same characteristic polynomial.  

Question A is designed to evaluate basic formal and advanced representational 

understandings of matrix equivalence, and Question B – its applicational 

understanding. 

Similarity 

Formal understanding: the students can recall the definition of similarity.  

Instrumental understanding: the students can implement the definition of similarity; 

they are aware that elementary operations do not preserve similarity. 

Representational understanding: at the basic level, the students know that two 

diagonalizable matrices are similar if and only if they have the same characteristic 

polynomial and, in particular, the same determinant and trace. At a more advanced 

level they also know that triangulable matrices are similar if and only if they have the 

same Jordan form, and, in general, two matrices are similar if and only if they have 

the same rational form. 

Relational understanding: at the basic level, the students know that similar matrices 

are equivalent. At a more advanced level, they also know that that similar matrices 

represent the same linear operator: if T is a linear operator on a finite-dimensional 

vector space V and if A represents T with respect to a basis  of V , and B represents 

V with respect to a basis  , then 1B P AP , where P  is the transformation matrix 

from   to  .  



  

Applicational understanding: the students know that similarity to a diagonal matrix 

(similarity to a matrix in a Jordan form) is very useful in differential equations, 

difference equations and computing polynomials of matrices. 

The concept of similarity is a fundamental concept and thus it should be taught in all 

linear algebra courses. Ideally, the lecturer should aim at developing all types of 

understanding similarity in all students. The least demanding linear algebra course 

should aim at developing basic formal, instrumental, representational and relational 

understandings of similarity. In between the ideal and the least demanding scenarios, 

there is a room for the lecturers' trade-offs. The trade-offs may be decided upon 

accordingly to characteristics of the class, and it is important that the lecturer will be 

aware of the pedagogical consequences of the choices. For instance, for engineering 

and applied mathematics students the applicational understanding should be 

emphasized, and for pure math majors, for whom the course is an introduction to 

more advanced algebra courses and to functional analysis, achieving advanced level 

of representational and relational understanding of similarity is crucial. Another 

example of a trade-off is teaching the Jordan form but giving up teaching the rational 

form and, in this way, gaining some time for applications. This decision would be 

appropriate for courses of mixed audience. We are aware, of course, that in many 

cases the trade-off decisions depend on the teacher's preferences, and hope that this 

discussion may result in better grounded decisions. 

Orthogonal Similarity  

Orthogonal similarity has an important role in highlighting the connectedness of the 

course. For this reason, we focus here on the relational understanding of the concept. 

Relational understanding of orthogonal similarity presumes the knowledge that 

orthogonal similarity is both similarity and congruence, that it is a special case of 

unitary similarity and that two matrices are unitary similar if and only if they 

represent the same linear operator with respect to different orthonormal bases. In 

addition, orthogonal similarity is related, by means of Sylvester Inertia Theorem, to 

comparison of different methods of diagonalization, and, in turn, to Givens Method 

for computing the eigenvalues of real symmetric matrices. 

DISCUSSION  

Equivalence relations play an important role in mathematics, in general, and in linear 

algebra, in particular. Halmos (1982, p. 246) points out that the concept of an 

equivalence relation "is one of the basic building blocks out of which all 

mathematical thought is constructed". Skemp (1986) notes that the idea of 

equivalence relations helps to form a bridge between the everyday functioning of 

intelligence and mathematics. Many researchers and lecturers pointed out that 

constructing such a bridge is not an easy endeavour (e.g., Asghari & Tall, 2005; Chin 

& Tall, 2000; Chin & Tall, 2001; Mills, 2004), in particular, because the notion of 

equivalence relation is mathematically and epistemologically complex.  



  

Stimulated by the famous paper "Understanding understanding mathematics" by 

Michener (1978), we try to understand and explain what it means to "understand" the 

concept of equivalence relations, and in particular equivalence relations between 

matrices. This is in line with and in continuation of the extended effort that has been 

made so far to promote students' conceptual understanding in linear algebra (e.g., Day 

& Kalman, 2001; Dorier, 2000, 2002; Dreyfus, Eisenberg & Uhlig, 2003; Harel, 

2000; Jaworski, Treffert-Thomas & Bartsch, 2011).  

In this paper we suggested a multi-facet definition of understanding equivalence 

relations between matrices and exemplified how the definition can be operationalized 

by means of mathematical tasks sensitive to its particular facets. We have also argued 

that an understanding of different types of equivalence relations between matrices, 

when taken as a central objective of a linear algebra course, can embrace most (if not 

all) topics usually taught in linear algebra courses. This also may educate the students 

to appreciate the applications of linear algebra and, at the same time, the 

mathematical structure and beauty of the subject. Consequently, the presented 

definition can be used as an organizational framework for planning, teaching and 

evaluating a linear algebra course.  

More specifically, the choice of the equivalence relations, for teaching,  depends on 

the level and the purpose of the course. Most one-year courses include row 

equivalence, column equivalence, matrix equivalence, similarity, congruence, unitary 

similarity and orthogonal similarity. A least demanding course can deal only with the 

first four relations, and a more advanced course can include also *congruence and 

consimilarity. The suggested definition of understanding equivalence relations may 

guide the lecturer in establishing feasible goals, in planning the course to achieve 

these goals and in evaluating the results. In some cases, a lecturer may be content 

with teaching aimed at particular types of understanding of the concepts at different 

levels of deepness. Reasons for this may be, for example, time constraints or the 

students' needs. Experienced teachers will decide what the minimum level of 

understanding of each type they want to achieve should be. We hope that our paper 

will help not only experienced teachers in doing the same. In addition, our 

operational definition may be useful as a part of a theoretical framework in a study 

dealing with students' learning of linear algebra or with development of lecturers' 

pedagogical and epistemological knowledge.  

Although our paper is theoretical, we would like to mention here that we used the 

operational definition of equivalence relations as a framework for teaching a first 

year linear algebra course at the Technion. In addition, the tasks presented in the 

paper were tried in a series of informal interviews with the students who took part in 

the course and volunteered to participate in the interview. The interviews helped us to 

get an initial impression to which extent our conceptualization of understanding a 

concept is compatible with what students mean by understanding a concept and in 

particular, which types of understanding the concept of equivalence relations can be 

identified in students' mathematical performance. The interviews seem to confirm 



  

that the types and levels of understanding a concept of equivalence relations, 

described in the paper, are plausible. The validity of the suggested definition of 

understanding and the helpfulness of the suggested didactical approach will hopefully 

be tested in future empirical studies.  
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