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We first discuss our perspective and three useful actions in proof construction that 

depend on persistence. Persistence is important for successful proving because it 

allows one to “explore”, including making arguments in directions of unknown 

value, until one ultimately makes progress. Persistence can be supported by a self-

efficacy belief, which is “a person’s belief in his or her ability to succeed in a 

particular situation” (Bandura, 1995). We discuss a study of U.K. undergraduates’ 

perceived sense of self-efficacy with regard to proving (Iannone & Inglis, 2010). We 

then examine actions needed for a successful proof construction of a theorem given 

to mid-level U.S. undergraduates in a transition-to-proof course. We contrast those 

actions with the actual actions of a mathematician proving the same theorem. 
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INTRODUCTION 

In this paper we first discuss our perspective on proof construction. Then, drawing 

on observations from a multi-year teaching experiment, point out three aspects of 

proof construction that appear to be especially difficult to teach. We suggest that the 

teaching difficulty arises from a need for students to have a kind of persistence, 

which in turn may depend on students’ sense of self-efficacy. After discussing self-

efficacy, we consider a prior study of U.K. undergraduates’ performance and 

perceived sense of self-efficacy with regard to proving(Iannone & Inglis, 2010). We 

next illustrate the way that self-efficacy and persistence are valuable by discussing 

the proof construction of a specific theorem that students in the teaching experiment 

are asked to construct and how one mathematician approached proving it. Then, after 

a brief discussion, we end with some teaching implications. 

OUR PERSPECTIVE 

We view constructing a proof as a sequence of actions (Selden, McKee, & Selden, 

2010). Some of these are physical, such as writing a line of the proof, and some are 

mental, such as focusing on the conclusion or “unpacking” its meaning. Such actions 

are taken in response to certain kinds of situations in a partly constructed proof. With 

practice, the links between some repeatedly occurring proving situations and the 

resultant actions will become automated, thus reducing the burden on working 

memory in future proof construction. Many such actions taken during the 

construction of a proof are not recorded in the final written proof. Thus, it may be  

difficult to mimic a given proof, or even parts of it, when constructing another proof. 



  

Three useful actions in proof construction 

In several iterations of teaching a U.S. second-year university transition-to-proof 

course in a modified Moore Method way (Coppin, Mahavier, May, & Parker, 2009; 

Mahavier,1999), we have observed the following three useful actions that can be 

undertaken in proof construction situations. (1.) Exploring. In constructing part of a 

proof, one may understand both what is to be proved and what is available to use 

without having any idea of how to proceed. In such situations, one might reasonably 

try to prove something new of unknown value. However, we suspect many students 

are reluctant to do this, perhaps lacking confidence in their own ability to use 

whatever new they might prove. (2.) Reworking an argument in the case of a 

suspected error or wrong direction. In constructing a proof, one may come to 

suspect one has made an error or is arguing in an unhelpful direction. An appropriate 

response would be to rework part of the argument. However, we suspect many 

students are reluctant to do this, perhaps because they lack confidence in their own 

abilities to produce something new and better than before. (3.) Validating a 

completed proof. Upon completing a proof, one should read it carefully for 

correctness from the top down, checking whether each line follows from what has 

been said above. We suspect that few students do this, perhaps because they do not 

think that they are able to find errors in their own, just completed, proofs. 

Some student errors may depend on a wrong belief about mathematics or logic or on 

a misinterpretation of a definition. Such errors can be pointed out and an explanation 

can be provided by a teacher. However, the above three actions in proof construction 

are not about correcting an error, but about habitually acting appropriately in 

particular situations. They seem to depend on students’ views of their own abilities, 

that is, on a sense of self-efficacy and persistence. We suspect that encouraging this 

kind of appropriate behaviour may require some kind of teaching beyond explaining 

errors. 

SELF-EFFICACY 

Self-efficacy is “a person’s belief in his or her ability to succeed in a particular 

situation” (Bandura, 1995). Of developing a sense of self-efficacy, Bandura (1994) 

stated that “The most effective way of developing a strong sense of self-efficacy is 

through mastery experiences,” that performing a task successfully strengthens one’s 

sense of self-efficacy. Also, according to Bandura, “Seeing people similar to oneself 

succeed by sustained effort raises observers’ beliefs that they too possess the 

capabilities to master comparable activities to succeed.”  

According to Bandura (1994), individuals with a strong sense of self-efficacy: (1) 

view challenging problems as tasks to be mastered; (2) develop deeper interest in the 

activities in which they participate; (3) form a stronger sense of commitment to their 

interests and activities; and (4) recover quickly from setbacks and disappointments. 

In contrast, people with a weak sense of self-efficacy: (1) avoid challenging tasks; 



  

(2) believe that difficult tasks and situations are beyond their capabilities; (3) focus 

on personal failings and negative outcomes; and (4) quickly lose confidence in 

personal abilities.  

Bandura’s ideas “ring true” with our past experiences as mathematicians teaching 

courses by the Moore Method (Coppin, Mahavier, May, & Parker, 2009; 

Mahavier,1999). Typical Moore Method (advanced undergraduate or graduate) 

courses are taught from a brief set of notes consisting of definitions, a few requests 

for examples, statements of major results, and those lesser results needed to prove 

the major ones. Exercises of the sort found in most textbooks are largely omitted. In 

class meetings, the professor invites individual students to present their original 

proofs and then very briefly comments on errors. Students are typically forbidden to 

read anything on the topic or to discuss it with anyone other than the professor. Once 

students are able to successfully prove the first few theorems, they often progress 

very rapidly in their proving ability, even without apparent explicit teaching, and 

even when subsequent proofs are more complex. Why should this be? We 

conjectured then, and also now, that students obtained a sense of self-efficacy from 

having proved the first few theorems successfully, and this helped them persist in 

explorations and re-examinations needed to prove subsequent theorems. That is, they 

learned to gather as much information as they could and explored various ideas, 

whether or not they could initially “see” their usefulness.  

Similarly, in discussing geometry conjectures, de Villiers (2012) pointed out places 

where a novice might  

lose hope of getting anywhere as it’s not obvious from the start this will lead somewhere 

useful. However, students should be encouraged to persist  … and not so easily give up 

… One might say that a distinctive characteristic of good mathematical problem solvers 

[and provers] are that they are ‘stubborn’, and willing to spend a long time attacking a 

problem from different vantage points, and not easily surrendering. (p. 8) 

However, dogged persistence in a single direction, without accompanying 

monitoring and control, can lead to what Schoenfeld (1985, p. 316) called 

mathematical “wild goose chases.” 

Further, the American mathematician Steven Krantz (2012) has written, in his book 

on mathematical maturity, that  

at least as important [as being smart] is perseverance or tenacity. Mathematics can easily 

be discouraging. … you may find that you are stuck for a goodly period of time. … You 

either do not know enough, or do not know the right things. This is why tenacity is 

important. You must have adequate faith in yourself [sense of self-efficacy] to know that 

you can battle your way through the problems. … Not unrelated to the idea of tenacity is 

the property of being comfortable with delayed gratification. … Once you are challenged 

to generate your own proofs and counterexamples, you are frequently at odds, and often 

frustrated. … The unifying theme for dealing with the need for tenacity and the need to 



  

deal with delayed gratification is self-confidence [sense of self-efficacy]. You need to 

believe in your own abilities, and you need to believe that you can actually do this work. 

(pp. 97-99). 

Thus, it would seem that a sense of self-efficacy, that is, a belief in one’s ability to 

succeed on a particular kind of task, enables one to persist despite frustrations or 

wrong paths and that this is an important part of doing mathematics, and in 

particular, of proving original results. Indeed, we suspect that it is an important part 

of much creative cognition in general. 

 

UNDERGRADUATES’ SENSE OF SELF-EFFICACY AND 

PERFORMANCE IN PROOF CONSTRUCTION 

One study investigated the relationship between U.K. undergraduates’ perceived 

sense of self-efficacy with regard to constructing proofs and their actual performance 

on proof tasks (Iannone & Inglis, 2010). The study consisted of a two-part 

questionnaire administered to 76 first-year undergraduates studying mathematics (or 

studying for a joint degree with a substantial mathematics component) at a highly 

ranked U.K. university. The data were collected in the first semester after the 

students had completed eight weeks of degree level mathematics study. The first part 

of the questionnaire consisted of 28 statements, such as “I am good at writing 

mathematical proofs” and “I never know how to start a mathematical proof”, that 

students decided were, or were not, characteristic of them (using a Likert scale). 

These statements were designed using the self-efficacy literature of Bandura and 

others. The second part of the questionnaire consisted of four novel proof 

construction tasks that the researchers and a mathematics lecturer considered feasible 

for that cohort. For example, one proof task was: Let d, a, and b be integers. Prove 

that if d | a and d | b then d
2 

| (a
2
 + b

2
). The result was that “those participants who 

had low perceived proof self-efficacy [scores] tended to do worse on proof 

construction tasks than those participants who had a high perceived proof self-

efficacy [score].” (p. 5). The authors concluded that their data “confirms that there is 

a positive correlation between students’ perception of their abilities at producing 

proofs and their actual proof production performance, in line with general literature 

about self-efficacy and mathematical ability.” (p. 5) 

While this study is suggestive, it did not indicate causality or consider a mechanism 

that would relate a perceived sense of self-efficacy with success at proof production. 

Indeed, because the proofs constructed by the undergraduates were not too 

demanding and were to be completed within twenty minutes, this study by Iannone 

and Inglis (2010) sheds little light on any causality relationship between self-efficacy 

and persistence in constructing more difficult proofs, where noticing and correcting 

errors and pursuing exploratory argument directions not known in advance to be 

helpful, would come into play. For this purpose, in the next section, we provide a 



  

hypothetical proof construction of a more difficult theorem and suggest where 

students might need to reflect on and explore various argument directions, in 

particular, directions that probably could not be seen to be helpful before they were 

undertaken. 

A HYPOTHETICAL PROOF CONSTRUCTION 

In this section we describe the hypothetical proving actions for a theorem chosen 

from a set of notes used in our one-semester, 3-hour per week, mid-level 

undergraduate transition-to-proof course. In this course, the students present in class 

their proofs of theorems from the notes and receive substantial criticisms and advice. 

There is no textbook and there are no lectures. The notes include theorems about 

sets, functions, real analysis, and abstract algebra, as well as definitions and requests 

for examples. The hypothetical proof construction we will describe is for one of the 

more difficult theorems in our  notes and occurs near the end of the algebra section: 

Theorem: If S is a commutative semigroup with no proper ideals, then S is a group. 

To date, after two iterations of the transition-to-proof course, only one student (of 

34) has persisted in proving this theorem correctly (albeit over the summer holiday). 

Thus, one can conclude that constructing a proof of this theorem presents quite a 

challenge. 

The relevant background information for this proof construction is quite small. A 

semigroup is a nonempty set S with an associative binary operation that we will write 

multiplicatively as xy for elements x and y of S. Associativity means that for all 

elements x, y, and z of S, (xy)z = x(yz). S is commutative means that for all elements x 

and y of S, xy = yx. If A and B are subsets of S, we mean by AB the set of elements ab 

where a and b are elements of A and B respectively. In this setting, a nonempty 

subset I of S is an ideal of S provided SI is a subset of I. Such an ideal is called 

proper in S provided it is not all of S. In this commutative setting, S is a group if it 

has two additional properties. First, there must be an “identity” element e of S so that 

for any element s of S, es = s. Second, given any element s of S there must be an 

“inverse” element s' of S so that s's = e.  

In constructing a proof of the above theorem, it is easy to see that if I is an ideal of S, 

one can conclude I is not proper, that is, I = S. What is not so easy is trying to 

construct an ideal that “looks” different from S, and what that might have to do with 

producing an identity element e of S and inverses, in order to prove that S is a group. 

Since there is nothing else to work on, one must persist in trying to find an ideal of S 

without any idea of whether, and how, that would be helpful. It turns out that some 

students rather quickly think that if s is any element of S then S{s} (also written Ss) 

might be an ideal of S, and hence equal to S. Once the idea has been articulated, it is 

not so hard to prove that Ss is an ideal. But how might Ss = S help in proving that S is 

a group? Nothing in the students’ notes says anything about solving equations in 

semigroups. However, if t is also an element of S, the above set equation means that 



  

there must be an element x of S so that xs = t. That is, the equation xs = t can always 

be solved for x. It turns out that one can use the solvability of this equation in several 

ways to collect information which, for many students, is of unknown utility. 

Nevertheless this information, once collected, can be organized to show the existence 

of an identity element and inverses in S. To do this requires both persistence and a 

willingness to obtain whatever results, in the form of equations, that one can without 

knowing whether those results will ultimately be helpful. (See the proof in the 

Appendix.) 

We could have added two easily proved lemmas to our course notes that would have 

made the proof of the above theorem much easier for our students. However, the 

purpose of the course is to learn to construct a variety of hard, as well as easy, 

proofs, and having relevant experiences is important in developing the students’ 

ability to do so. We view learning to persist in “exploring” mathematical situations 

by obtaining “whatever one can get,” even without knowing its ultimate usefulness, 

as an important part of developing students’ proving abilities. 

While the proof of the above theorem calls for persistence and exploration, proving 

in general can call on a whole “tool box” of knowledge and abilities, such as the use 

of proof by contradiction or mathematical induction, or looking for inspiration by 

proving easier theorems, perhaps by adding a hypothesis such as finite-dimensional 

or finite. However, discussion of such topics is beyond the scope of this paper. 

A MATHEMATICIAN’S PROOF CONSTRUCTION 

Our PhD student, Milos Savic (2012), investigated nine mathematics professors’ 

proving using tablet PCs with screen capture software, as well as Livescribe pens 

and special paper, so that they could take the devices home and construct proofs in a 

naturalistic setting (without the time constraints and influences of an interview 

setting). All nine mathematicians’ writing and speaking was recorded with time and 

date stamps. Several of the mathematicians acknowledged getting “stuck” on the 

above Theorem 20: If S is a commutative semigroup with no proper ideals, then S is 

a group, in a short set of notes containing only the material on semigroups. However, 

none gave up, as most students might, but persisted. One mathematician proved it the 

next day and another proved it after taking a break for lunch. Later, in a focus group 

interview, the professors indicated several ways they have of getting “unstuck” in 

their own research. These included getting up and walking around or doing 

something else for a while, as well as strengthening the hypotheses in order to prove 

an easier conjecture. It seems clear these mathematicians took the construction of the 

proofs in the semigroups notes as a positive challenge and had a sense of self-

efficacy. Apparently this provided the motivation to persist, a crucial component of 

their success.  

Several of the nine mathematicians volunteered that the material was both accessible 

and unfamiliar. However, they were unaware of the origin of the notes, that is, that 



  

they came from the course described above. Perhaps for this reason, several 

mathematicians attempted to construct counterexamples to some of the theorems. In 

attempting to prove Theorem 20, all nine mathematicians at some point considered 

“principal” ideals, a concept not in the notes, when considering the ideal Ss, where s 

is an element of S. This probably comes from remembering facts about ideals in 

rings; however, our students could not have had such memories as the course notes 

did not cover rings, and this course is a prerequisite for abstract algebra which would 

cover rings. Note that Ss = S is one of two key ideas in proving Theorem 20--ideas 

without which it is difficult to make progress. 

Dr. G’s Construction of a Proof of Theorem 20 

Below we describe most of the work that one of the nine mathematicians, Dr. G, did 

when attempting to prove Theorem 20, which he eventually did successfully. Our 

description is taken from transcripts of Dr. G’s speaking and writing while he 

worked alone using a Livescribe pen and special paper that recorded his writing and 

speaking with time and date stamps.  

As seen below, Dr. G took a meandering path as he explored how to prove Theorem 

20. His various “twists and turns” are indicated in bold typeface. Dr. G started at 

7:02 a.m. by considering the statement of Theorem 20, but decided to think about it 

and have breakfast. At 8:07 a.m., he returned from a walk and realized that gS 

(where g is an element of S) is an ideal, so gS = S. He then thought about inverses 

and struckthrough his entire previous argument. At 8:09 a.m., he noted that he 

needed an identity element which is not given. At 9:44 a.m., he became suspicious 

that Theorem 20 might not be true, but noted that he had few examples which 

might show that. 

At 9:48 a.m., Dr. G started “tossing around” the idea that a [commutative] 

semigroup with no proper ideals must have an identity, in which case, he could show 

it is a group. However, he didn’t see why S should have an identity. He began to 

think that translating by a fixed element [an idea not in the notes] would move 

every element, which would mean there was no identity. Consequently, he then 

began to look for a counterexample. By 9:50 a.m. he neither saw how to prove 

Theorem 20 nor how to find a counterexample.  

He then looked ahead to Question 22, the final task in the notes, which has three 

parts that ask whether certain semigroups are isomorphic. He saw how to answer 

that and then looked at Theorem 21: A minimal idea of a commutative semigroup is 

a group. He thought that he could probably prove that, so he went back to Theorem 

20. By 9:51 a.m. Dr. G recalled that he had earlier rejected Theorems 3, 9, and 12 

of the notes and also did not believe that there are unique minimal ideals. By 9:53 

a.m., he recalled that he had not been told any of the theorems were false and looked 

at the non-negative integers under multiplication. He saw that {0} is a minimal 

ideal and noted that the non-negative integers under multiplication do not form a 



  

group. He thought that this was a counterexample to Theorem 21, but had 

interpreted Theorem 21 incorrectly – something he later discovered and fixed. 

At 9:54 a.m., he started actually answering Question 22. By 9:58 a.m., he had 

answered its three parts correctly. At 9:59 a.m. Dr. G. took a break to think about 

Theorem 20 and at 10:08 a.m. he again attempted a proof of it. This time he saw 

that for a S, there is e S so that ae = a and saw that e is “acting like …a right 

identity on a. Now why does it have to act that way on [an arbitrary] b?” By 10:12 

a.m. he found e' so that be' = b, but that didn’t help since he couldn’t show that e = 

e'. Then at 10:13 a.m. he saw that there is an f so that b = af, and then by 10:14 

a.m., he saw that be = afe = aef = af = b. At 10:15 a.m., he saw that e is the 

identity element. By 10:18 a.m., he had used a similar technique to show S has 

inverses and is thus a group. 

Perhaps the most important thing about the above description of Dr. G’s work is 

what is not there. There is no evidence that Dr. G thought there was anything wrong 

with having gone in all of those unhelpful directions or with having thought that 

some theorems were false, that he later discovered were true. What seemed to matter 

to him was the generation of ideas. If those ideas resulted in errors, one fixed them 

and learned from them. He exhibited persistence and a willingness to try argument 

directions that he clearly didn’t know ahead of time would be helpful, and he altered 

directions when the need arose. It seems clear that Dr. G had the needed persistence, 

which was probably supported by a sense of self-efficacy with respect to his own 

mathematical research. 

DISCUSSION 

We are not the first to have considered the effect of affect and self-efficacy on 

mathematicians’, and others’, proving or problem-solving success. In their study of 

mathematicians’ problem solving, Carlson and Bloom (2005) concluded that the 

mathematicians’ effectiveness “appeared to stem from their ability to draw on a large 

reservoir of well-connected knowledge, heuristics, and facts, as well as their ability 

to manage their emotional responses [italics ours].” Also, in a study of non-routine 

problem solving, McLeod, Metzger, and Craviotto (1989) found that both experts 

(research mathematicians) and novices (undergraduates enrolled in tertiary-level 

mathematics courses), when given different experience appropriate problems, 

reported having similar intense emotional reactions such as frustration, aggravation, 

and disappointment, but the experts were better able to control them. This suggests 

that the mathematicians in the two studies had a mathematical self-efficacy belief 

that allowed them to persist. 

TEACHING IMPLICATIONS 

It seems to us that in order to do things that require persistence and exploration, a 

student is likely to need to believe that he or she can personally benefit from his or 



  

her persistence or exploration. That calls for a self-efficacy belief, which in turn calls 

for, perhaps numerous, successes in what is to be done. We see this as inherently 

difficult to arrange in traditional classes that generally involve students 

understanding a wide range of topics fairly quickly.  

Below we will narrow our attention to learning to construct proofs in a transition-to-

proof course, but we think something similar could be done in other situations that 

call for increasing self-efficacy beliefs about doing mathematics. 

In order to maximize students’ opportunities to experience successes in various 

aspects of proof construction in transition-to-proof courses, it would be good to have 

students constructing their own proofs as early as possible. However, this is often 

delayed in many such courses by an initial rather formal treatment of logic. While 

correct logic is essential for proof construction, we think its early and abstract 

treatment can be replaced by explanations of the relevant logic when needed in the 

context of the students’ own work (in a “just-in-time” manner). This is because logic, 

beyond what most people know, actually occurs fairly rarely in student-constructed 

proofs (Savic, 2011). 

While teaching logic can be integrated into discussing students’ proofs and need not 

delay the start of their constructing proofs, there is an aspect of proving that is not 

usually explicitly taught early and that could be very helpful in facilitating student 

successes. There is a relationship between the structure of a proof, the logical 

structure of the theorem being proved, and the theorems and definitions used in 

constructing the proof. This relationship appears as part of the final written proof, 

but it can be isolated and considered first. One can write it first leaving blank spaces 

for the remaining work. We have come to call this a proof framework (Selden & 

Selden, 1995). 

In constructing a proof framework, one is writing as much as possible of a proof 

before attempting to generate the ideas needed to complete it. One writes the 

hypotheses first, leaves a blank space for the body of the argument, and then writes 

the conclusion. Typically one then “unpacks” the meaning of the conclusion, and 

inserts the beginning and end of that part of the proof into the earlier blank space. 

One proceeds as far as possible in this way. This exposes the “real problem” to be 

solved. After the framework has been constructed, one can then try to generate the 

original ideas needed to complete a proof. Teaching students to build proof 

frameworks allows them to experience early successes. However, sometimes 

constructing a proof framework helps only a little in obtaining the final proof; this is 

the case for Theorem 20 discussed above. For other theorems, such as the theorem 

that states that the sum of two continuous real functions is continuous, constructing a 

proof framework can be very helpful (Selden & Selden, to appear). 
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