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This paper discusses a possibility to use interconnecting ‘proof’ problems that allow 
multiple solutions for teachers’ professional development. Groups of teachers, which 
consisted of practitioners from various K-12 grade levels, were asked to produce 
several proofs of a given statement. I present a sampling of these proofs, which 
includes approaches and ways of reasoning specific for each grade level. Moments of 
teachers’ collaboration and mutual influence are highlighted. This training method 
gives the participants an opportunity to make deeper mathematical connections as 
well as to understand better the culture of proof as a developing process along the 
entire mathematics curriculum across all grades. 

INTRODUCTION  
Proofs and logical explanations of mathematical ideas appear in various forms at all 
levels of mathematics education. Many mathematical facts can be observed and 
hypothesized at an early stage of a child development, perhaps in the primary or 
elementary school. They are introduced and explained by means appropriate for that 
level. However, the same facts may be proved later in the secondary school using 
more sophisticated vocabulary and advanced methodology, and illustrated at the 
university level using even more rigorous and abstract ideas. A mathematical 
problem, in particular, one that asks to prove a given statement, is called 
interconnecting if it obeys the following conditions: (1) allows a simple formulation; 
(2) allows various solutions at both elementary and advanced levels; (3) may be 
solved by various mathematical tools from different mathematical branches, which 
leads to finding multiple solutions, and (4) is used in different grades and courses and 
can be understood in various contexts (Kondratieva, 2011a, 2011b). 
It had been proposed that a study of a progression of mathematical ideas that revolves 
around one interconnecting problem is useful for developing learners ’perception of 
mathematics as a consistent subject. Students familiar with the problem from their 
prior hands-on experience will use their intuition to support more elaborate 
techniques taught in the upper grades.  
What is lacking about this approach, while it has a theoretical basis, is empirical 
evidence concerning teachers’ practical reliance on it in their own classrooms. A 
related question is how to help teachers to adopt the interconnecting problem 
approach through their professional development. In this paper I discuss in-service 
teachers’ experience with a problem that allows multiple proofs. A group of 25 
mathematics teachers participated in this study in 2010 and another group of 20 
teachers in 2012. Both groups took a graduate course on solving mathematical 
problems (I was the instructor) and this activity was one of the assignments in the 
course. Altogether nine subgroups of 5 students were formed, each of which included 



  
at least one primary/elementary, one junior high, and one senior high teacher. They 
were given one week to work on a problem stated below. Within each subgroup, the 
teachers were contributing solutions and explanations appropriate to the level they 
teach, reflecting on and checking each other’s solutions. Each subgroup required to 
submit at least three distinct proofs. According to their responses, this activity 
allowed the teachers to view the statement from various perspectives and to see how 
it might be used within different grade levels and mathematical topics. In the next 
section I discuss a theoretical background of this research project. Then I analyse 
mathematical ideas that emerged from the teachers’ collective work. In conclusion I 
comment on the possibility for teachers’ development offered by this study.   

THEORETICAL CONSIDERATIONS  
Teachers' abilities to model proofs are very important for their students' 
progress in understanding of mathematics. Poor or confusing instruction 
produces a little learning (see e.g. Hsieh, 2005 as sited in Fou-Lai Lin et al, 
2012).  Thus, teachers' professional development in the area of proofs and 
argumentation is desirable (Stylianides & Stylianides, 2009).  Teacher 
education should involve such classroom practices as spontaneous engagement in the 
processes of justification and evaluation of mathematical ideas and arguments (Simon 
& Blume, 1996). Solving proving tasks individually or sharing and criticizing each 
other ideas in small groups are recommended practices helping teachers developing 
their understanding of proof (Zaslavsky, 2005;  Stylianides & Stylianides, 2009).  
In the process of proof construction, both self-convincing and persuasion of 
others are important (Harel and Sowder, 2007; Mason et al 1982).  Teachers need to 
have an appropriate experience of proving processes in order to 
successfully implement them in their classrooms, which often would require a 
dramatic change in existing classroom practices (Douek, 2009).  Such 
experiences include making conjectures, moving from experimental verification 
to general argumentation (Kunimune  et al, 2009), becoming aware of limitations 
of current 'justification schemas' (Harel & Sowder, 1998), and developing  more 
sophisticated or more efficient proofs. In particular, multiple proof tasks (Leikin, 
2010) are found to be powerful “for guiding teaching and learning” (Sun & Chen, 
2009) within a “spiral variation curriculum”. It is also desirable that teachers were 
familiar with the culture of argumentation, made rational choices of mathematical 
tools and means of communication (Boero, 2011) and were explicit regarding 
transparency of proofs’ presents in their classrooms discussions (Hemmi, 2008).  
It had been observed that primary and secondary teachers might have distinct 
views on the appropriate ways and means of mathematical argumentation. This is 
generally consistent with cognitive stages of maturation of proof structures (Tall et al, 
2012) as the learner grows from a child to adult. However, some elements of 
teachers’ practices may cause an obstacle in their students’ proper mathematical 
development. Teachers dealing with very young students use little symbolism and 
operate with 'quasi-real' mathematical objects (Wittman, 2009) and may be reluctant 



  
to accept other modes of argumentation. Elementary teachers also tend to rely of 
textbooks or more capable peers' information while constructing their own arguments 
(Simon & Blume, 1996).  In contract, secondary teachers often reject verbal and 
visual proofs as being invalid (Biza, 2009) as they believe that all proofs must be 
formal algebraic (Dreyfus, 2009) and follow specific steps (Herbst, 2002). 
 Consequently these teachers may focus on steps and algebraic details ignoring the 
overall logic of argumentation (Knuth, 2002).  The idea that all proofs must be formal 
and rigorous leads some teachers to believe that proofs are inaccessible for grade 
school students, and thus excludes proofs from their pedagogical repertoire.  
In this study, I was looking at a possibility to address several concerns and to adopt 
teachers’ training recommendations found in the literature through teachers’ 
engagement with interconnecting problems. When forming working subgroup of in-
service teachers I specifically combined primary and secondary teachers in order to 
achieve the following outcomes: (1) expose elementary teachers to techniques and 
approaches employed in the secondary school; (2) expose secondary teachers to 
'common logic’ and intuition based explanations available at the elementary level; (3) 
let teachers to collaborate in solving an interconnecting proving problem, and 
thus let them to see and evaluate each other’s concept of proof. Such collaboration 
could allow teachers to perceive proof as a developing and continuous process 
present in various forms at all stages of schooling. I was interested to collect an 
evidence of these processes as well as to find out what kind of assistance the teachers 
might need in order to benefit from solving interconnecting problems in mixed 
groups. 

A PROBLEM AND COLLECTIVE POOL OF IDEAS   
The problem for this study was chosen from (Totten, 2007) based on the criteria (1)-
(4) for the interconnectivity listed in the Introduction.  
Problem: Given a square ABCD with E the mid-point of the side CD, join B to E and 
drop a perpendicular from A to BE at F.  Prove that the length of the segment DF is 
equal to the length of the side of the square. 
 

  

Figure 1: Problem to prove that length of DF is equal to the side of the square ABCD. 

In this section I present all ideas generated by nine groups of five teachers.  Some 
parts of original (given in italic) students' solution are summarized to save the space. 



  
Approach 1.  Direct measurement and comparison using various materials including a 
ruler, string, Popsicle sticks, compass, or dynamic geometry software. 

I used point D as the center of a circle and placed my compass on point C which 
I knew was 6 units from point D, as seen in the diagram provided.  I wondered if 
point F would be a point on the circle’s circumference.  I tried it, and sure 
enough point F was on the circumference of the circle.  Point D was the center 
of the circle and both points C and A were on the circumference of the circle.  
Therefore, segment DF is the same length as line AD and line DC which are 6 
units in length.  As well it is the same length as line AB and line BC, since all 
four sides of a square are equal.  Below (see Figure 2, left) is the graph with 
part of the circle described above drawn to show how I showed that segment DF 
was equal to the length of the side of the square ABCD: 

  
Figure 2: Approach 1 (use of compass) gives rise to the coordinate Approach 2. 

This approach generated an algebraic method produced by another group member. 
I really liked the idea that was suggested in Method 1 of drawing a circle 
through the points using D as the Center, but I am not sure how to generalize 
that. STUCK! Then I thought that if I could find the point F, I could sub it into 
the equation for my circle using a side length of “a”. I know how to find F by 
using the equation for the line that intersects to make F. I can find the slopes 
using “a” as my side length, but how can I find the y intercept to finish my 
linear equations? STUCK! If I incorporate my previous idea of using points into 
this it will work! AHA! 

Approach 2. Use of Cartesian coordinates of the points (see Figure 2, right). Let’s 
assume that D is located at the origin. Denoting the side length of the square as a we 
have the points D(0,0); A(0, a);  B(a, a); C(a,0). To determine the coordinates of 
point F we must first find the equations of the lines BE and AF. We have two points 
B(a, a) and E( a/2,0) from which we may determine slope of the line BE and 
ultimately the y-intercept: y=2x-a; Since BE is perpendicular to AF, the slope of line 
AF is -0.5 and the y-intercept is a. Thus AF has equation y=-0.5x+a. The intersection 
point F is found by solving  the equation 2x-a= -0.5x+a, which implies x=0.8a and 
y=0.6a. The distance DF between F and the origin D is the square root from the sum 



  
of squares of the coordinates of F, which after simplifications gives a, the side length 
of the square. This completes the proof. In students’ version of the proof it reads: 

So point F is )5/3,5/4( aa  . Then to see if it fell on the circle, we just need to plug 
it into the equation for our circle. The circle has a radius of “a” so we have our 
equation: 222 ayx =+ . Now we just substitute our point F and see if it works: 

.25/)916()5/3()5/4( 22222 aaaaa =+=+  Thus, our point F must be on the circle. 
Therefore, segment DF must be the exact same length as AD and DC which are 
also radii of the same circle and are also the sides of the square ABCD! 

Approach 3. Recognition of similar and congruent triangles (see Figure 3, left).  
I had to find yet another proof. I liked Method 2 but needed to show that AFD is 
an isosceles triangle by some other method... I used the properties of similar 
triangles and congruent triangles to show that DF = DA = 6 units. Draw a line 
from point D to the midpoint of AB . Call this midpoint X. DX  is parallel toEB   
because they have the same slope, so DX  must intersect AF  at a 90o  angle. Call 
this intersection point Y. Consider ΔAFB  and ΔAYX . (common 
angle); ∠AFB =∠AYX = 90o  angles. Therefore,ΔAYX ≅ ΔAFB . This means that    
AF
AY

=
BF
YX

=
AB
AX

.  Since: AX = XB = 3  units, AB = AX + XB = 6  units, and the ratio 

AF
AY

=
AB
AX

=
6
3
= 2  units .     We know that AB  is twice as long as AX , so AF  must 

be twice as long as AY . Therefore, AY =YF .  Consider ΔDAY  and ΔDFY . We 
know: AY =YF   and  ∠AFB =∠AYX  are   angles, and DY = DY  (common side). 
Therefore,  ΔDAY ≅ ΔDFY  because of the Side-Angle-Side congruence property.  
So  DF = DA = 6 units. QED 

        

Figure 3: Approaches 3 and 4 look at triangle AFD in two different ways. 

Approach 4. Use of trigonometry and the Cosine Theorem (refer to Figure 3, right).  
I was looking at triangle AFD and thought that I could possibly apply the 
Cosine theorem to find the side of interest. Note that angles CEB, EBA and DAB 
are equal, call it X. Angles CBE and BAF are equal Y, and X+Y=90 degrees. 
Let the square has side c, AF = a   and DF =Q . Then we obtain the following. 



  
From right triangle ABF we have c = a / sin(X) . From right triangle BCE we 
find cot(X) = 0.5 . From triangle AFD we conclude by Cosine Theorem that 
Q2 = c2 + a2 − 2accos(X) = c2 + a2 − 2a2 cot(X) = c2 + a2 − a2 = c2 . So, cQ = , or AD = DF . 

Reflection: Will this work for any size square? Yes because the ratio of the sides 
used in ΔBEC will always be 0.5 because E is the midpoint of side DC. 

Approach 5. Based on the recognition that AFED is cyclic (Figure 4, left). 
Aha! ADEF forms a quadrilateral and opposite angles ∠ADE   and ∠AFE  are 
both 90o so they add up to 180o . (We know ∠AFE  is a right angle because it’s 
supplementary to ∠AFB ) This means the other two opposite angles (∠DAF  and 
∠DEF ) must also add up to 180o since all angles in any quadrilateral add up to 
360o . Therefore, a circle can be constructed around the quadrilateral ADEF 
where each vertex, A, D, E, and F lie on the circle.  Now it’s likely I can prove it 
using arc measures. 

Now, note that angles CBE, BAF and DAE are equal, call this value y.  Then 
yBAFDAF OO −=∠−=∠ 9090 .  From the relation for inscribed angles and arc 

measures we have yDEarcADEarcAFD 2180)()(2 −=−=∠ . Thus yAFD O −=∠ 90 .   

                   

Figure 4: Approaches 5 and 6 use two different auxiliary circles. 

So line segments AD and DF must be of equal length since the isosceles triangle 
theorem states that sides which are opposite of equal angles in an isosceles 
triangle must also be equal. So DF is the same length as the sides of the square 
since AD is one of the sides 

ANALYSIS OF THE SOLUTIONS IN VIEW OF TEACHERS’ TRAINING 
Participants of this study were all enrolled in my graduate course on problem solving. 
Prior to solving the ‘proof’ problem presented in the previous section they practiced 
in solving several other problems individually and in groups. Their reading included 
the book by Mason et al (1982) regarding the stages of mathematical thinking and my 
paper (Kondratieva, 2011a) regarding the theory of interconnecting problems. Each 
group was asked to create as many as possible (but at least three) distinct solutions, 



  
individually comment on the thinking process highlighting AHA and STUCK 
moments (Mason, 1982), and as a group reflect on each others’ approaches, identify 
their place in mathematics curriculum and select the most appropriate solutions for 
submission. Upon completion of this task teachers were asked to comment on the 
perceived usefulness of this training method. 
Teachers’ solutions and responses were examined in order to compare contributions 
from primary and secondary teachers as well as to observe the effect of their 
collaboration.   Analysis of their work reveals the following.  
First, while there was a disagreement about sufficiency of Approach 1 that involves 
direct measurement, almost all groups included this approach in their reports. Many 
primary school teachers provided detailed lesson plans on using various instruments 
helping students to construct and measure elements of the picture. Other group 
members often commented that in their view this approach is not qualified as a proof 
but still is very convincing and illustrative. This result concurs with literature stating 
that primary and secondary teachers may disagree about adequacy of some 
explanations. But, remarkably, this simple approach stimulated other group members 
to invent more rigorous justifications. An example of such collaboration is given in 
the previous section leading to development of Approach 2.  
Second, majority of solutions dealt with concrete numbers. As it is evident from 
Approach 3, the teacher uses side of length 6 throughout her solution. While teachers 
had read about specialization and generalization techniques (Mason, 1982) and 
discussed them with their peers, still the tendency to use concrete numbers without 
further generalization was evident in the majority of papers. However, some teachers 
either made a comment on how to generalize their solution (see Reflection in 
Approach 4), and some had a proof in a general form (see Approaches 2 and 5).  
Third, many teachers used approximate calculations. For example, in the 
trigonometric approach they would typically write “take O4.63)5.0arctan( = ”, and then 
used approximate values of )4.63cos( O  and )4.63sin( O  to calculate the length of 
segment DF despite that the equality they were proving was exact.  
Fourth, many submissions were very wordy and far from being mathematically 
efficient in reporting their final solutions. Even though the participants were asked to 
submit the best possible solution, many papers contained lengthy algebraic 
calculations that could be easily optimized. This likely reflects teachers’ belief that 
every little detail must be brought up. But in doing that they often unnecessarily 
repeated or rephrased the same idea, and explained obvious things (“DY = DY  
common side”), as can be seen e.g. in Approach 3.  
Fifth, some groups submitted several solutions that employed the same mathematical 
idea and differed in very little details. It seems that the group members were hesitant 
to make their judgement and delegated the responsibility to choose the best solution 
to their instructor.  



  
And finally, while the group members’ collaboration was evident on several 
occasions and participants as a whole had produced a great deal of approaches, still 
there were solutions missed by the groups, even though elements of those solutions 
were present in the collective pool of generated ideas. As an example, the following 
approach was never proposed by the teachers, but when suggested by the instructor, 
they agreed that they were very close to discovering it by combining ideas from their 
Approaches 1, 2, and 5.  
Approach 6. Extend lines AD and BE and call the intersection point G (Figure 4, 
right). Note that DE is the midline in ABG, that is points, E and D are midpoints of 
sides BG and AG respectively. Since AFG is a right triangle then its vertices lie on a 
circle, and hypotenuse coincides with the diameter of the circle. Thus DF , DC  and  
DA  are all equal to the radius of the circle.   
For completeness, I give another approach that employs a bit more advanced 
technique and can be used to illustrate the advantage of learning some further 
theorems in Euclidean geometry. 

Approach 7. Based on Ptolemy’s Theorem for cyclic quadrilaterals. 
For cyclic quadrilateral AFED (Figure 4, left), the Ptolemy’s theorem reads: 
AF ⋅DE + AD ⋅FE = AE ⋅DF.  LetDE = a . Then AD = 2a , AE = BE = 5a . Set up equations 
BF +FE = 5a , and (2a)2 − (BF)2 = 5a2 − (FE)2 = (AF)2 from right triangles AFB and AFE. 
Solving the system, we get BF = 2a / 5 , FE = 3a / 5 , AF = 4a / 5 . Substituting these 
values in Ptolemy’s equality we findDF = 2a , which is the side length of the square. 

CONCLUSION.  

This paper analyses a collection of proofs produced by groups of in-service 
mathematics teachers whose expertise ranged across all grade levels. Based on their 
responses, all participants of this study found it very informative to collaborate on 
one problem and produce proofs employing various methods and ideas capitalizing 
on the “interplay of empirical and theoretical argumentation” (Jahnke, 2008). In 
words of one teacher, “I never thought before of a possibility to prove the same claim 
in multiple ways. I was really amazed to see how many different approaches were 
proposed by my teacher-colleagues and how they all fit in different grades’ math 
topics”. This study reveals the potential of the use of interconnecting problems for 
teachers’ training in mixed groups. Such setting allows teachers (1) to learn, evaluate, 
and criticize each other’s solutions, (2) to share their ideas and to persuade their 
peers, (3) to collaborate on connecting intuitive and experimental methods with 
general argumentation,  (4) to produce more efficient proofs, and (5) to choose 
appropriate tools and means to communicate their reasoning.  Note that all these 
experiences are recommended in the literature for teachers’ professional 
development. In addition, this training method allows teachers to see how different 
approaches are pertinent to different grades. Perceiving mathematics curriculum as a 



  
whole process of knowledge accumulation, teachers begin to acknowledge that many 
secondary school arguments are deeply rooted in primary/elementary level activities. 

At the same time, some study participants did not fully benefit from the offered 
exercise. This suggests the necessity of more focused supervision and advising of 
mathematics teachers during their training. In particular, such advising should aim at 
developing habit of spontaneous moving from specialization to generalization, 
conscious distinction between exact and approximate calculations, and reviewing 
one’s own solutions in order to eventually present them in a more general, insightful 
and concise form. The study also poses the questions: Why did all groups of teachers 
overlook certain approaches that clearly were within their capacity to produce? What 
can be done to ensure that teachers’ collaboration realises the entire potential present 
in the individual contributions?    
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