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Abstract – We present an analysis of the role of research processes and experimental activities in
our “Research Situations”, allowing students to learn fundamental knowhow in mathematics :
experimentation, studying particular cases, reasoning, formulation of conjectures, examples and
counterexamples, generalizing, proving, etc, as described in curricula and related documents of
French junior high schools and high schools. The reasoning and proving processes are a full part of
our SiRC. This will be illustrated here with examples.
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INTRODUCTION
Routine researcher activities comprise elementary tasks such as : choosing a
question, experimenting, studying special cases, choosing a solution framework,
modelling, reasoning, stating conjectures, proving, defining, eventually changing the
initial question, etc. Knowledge and tools to tackle these tasks are intrinsically part of
a scientific approach, they are necessary to do mathematics and cannot be brought
down to mere technics or methods.
In many countries, these basic tools are not available to a majority of scientific
students. What they do and say when confronted with an « open problem » shows
that their relation to mathematics  is very far from the mathematician standpoint :

• « I don't know how to solve this problem, because it's new for me »

• « I don't know what to do, because I don't know the technique »

• « This problem is badly formulated, hypotheses are missing »

• « To which chapter is related this problem ? »

French mathematical curricula insist on experimentation, discovery and quality of
scientific classroom activity for learning different types of reasoning and proofs, and
involve some elements of mathematical logic. However, in schoolbooks and teaching
practices, these objectives are not really treated, and the experimental approach and
research activities are scarce. The objections raised by teachers to avoid the research
situations in class are the institutional constraints and a lack of training to grasp and
manage such situations. The idea that, in mathematics, one can experiment, model,
study specific cases, infer conjectures from examples, is not present in the standard
didactical procedures. Mathematics are seen as a service discipline, that offers a set of
techniques and computation algorithms, although these can sometimes be



sophisticated. Theoretical and fascinating aspects are kept inaccessible and reserved
to experts.
The consequences of such positions and choices include attitudes and practices that
seem to go against those which would precisely enable a significant
research activity :

• Students are not allowed to change the hypotheses, nor to choose their own solution
framework.

• Two strong « rules » become implicit, when students have to write or validate their
proof :

«  Only the problem data and the properties taught in class should be used in the proof »

«  To complete a proof, one has to verify that all the hypotheses given are used »

• The mathematical activity is reduced to the technique of writing the proof, thus
shrinking the research and arguing initial process.

HYPOTHESES TOWARDS GUARANTEEING A GENUINE MATHEMATICS ACTIVITY

H1. There is no real possibility of an investigation if a « toolbox » (theorems, properties,
algorithms) is available and designated for the resolution of an obvious question. There is
no real mathematical activity without a truth issue that can be taken and tested by
students, while being non obvious to prove.

H2. It is neither necessary nor sufficient to arrange « real life » contexts (Coulange 1998)
to perform a research or an experimental investigation : such contexts do not guarantee
the relevance of the problem, and can even make noise that impede the investigation and
the understanding of the underlying logic.

H3. It is not reasonable to propose research situations that bring into play mathematical
concepts in construction. As a further advantage of avoiding such lapses, the problems
will be accessible to many levels of knowledge (sometimes from primary school to
university).

Our research work consists in conceiving appropriate specific situations – e.g.
problems and didactical staging (in the sense of scenic design) – available in different
institutional contexts, in experimenting them and analyzing their effects on the
learning of mathematical reasoning, proofs, and the underlying logic.

CHARACTERIZATION OF THE MODEL “SIRC”1

This didactical model was already in gestation in Arsac & al. 1995 and
Grenier & Payan 1998. Recall here the characterization of the SIRC model, as it has
been described in Grenier & Payan 2003 & 2007. As any model, it is a reference
(both epistemological and practical) for situations that we build, which can somewhat
differ from the model.

1 SiRC : “Situation de Recherche pour la classe” , ie. “Research Situation for Classroom”



• A SiRC is similar to an actual question in mathematical research or in a non
« didactified » one. This condition, very restrictive a priori, aims to avoid the question or
the answer may seem obvious or familiar. The objective is to give relevance to the
research activity. This condition can be artificially recreated by the « staging » of the
problem.

• The initial question is easy to understand at various levels of knowledge. Our intention
is to break with the usual didactic practice that tends to attribute any problem to a specific
grade level. To fulfill this requirement, the statements must in general be not as heavily
mathematized. However, we try to avoid random real life « noises », which complicate
the task of students in non-mathematical « concrete » problems, and sometimes prevent
them from entering into actual mathematics.

• Strategies to start with are available, but they won't solve the problem completely –
usual techniques or properties are not sufficient. In other words, one must ensure the
devolution of the problem, by leaving space to some uncertainty that cannot be reduced
just by applying known techniques or usual properties (i.e., what Brousseau described in
his theory as a « good » situation). The theoretical framework of resolution is neither
given nor obvious.

• One can use several strategies, such as «trials and errors », study particular cases, etc ;
relevant conjectures are not obviously true, counter-examples are attainable. These points
are meant to encourage the construction of conjectures by students, based on an
exploration of the question investigated. These conjectures can be examined by the
students, through accessible examples and counterexamples.

• Hypotheses, or the initial question, can be changed. One can change the assumptions or
the original question, and grab a new problem. The initial question can lead to related
questions : closing a problem through the choice of certain parameter values, or starting a
new research activity.

A SiRC is characterized by some research variables : problem's parameters which
could be didactical variables (i.e. at teacher's disposal), but that are left at the
student's disposal. The social organization is constitutive of a SiRC : working in
small groups, material to play and search, time sufficient to search and discuss.
Teachers dealing with a SiRC is a specific activity : training teachers is necessary. 
Methodology and experimental results
The SiRC didactical model (Research Situations for Classroom) has been studied in
the “Maths-à-Modeler” team for 15 years, using classical didactical theories and
methodologies : construction of situations, experiments with numerous students at
many different levels of knowledge (several hundreds of students) and analyses of the
results. Some of these SiRC have been integrated in certain courses at university and
in secondary schools. Results have been published in articles (Grenier 2002, 2003,
2008a, 2008b, Tanguay & Grenier 2009 & 2010) and in Theses (Ouvrier-Buffet 2003,
Deloustal-Jorrand 2004, Godot 2005, Cartier 2008, Giroud 2011). We give in annex 1



a list of Research Situations for Classroom which have been studied for more than ten
years. 
Example of different types of reasonings and proofs worked in a SiRC 
In the SiRC given in annex 2, « Tiling polyminoes with dominoes », in the case
where the polymino is a square and n = 3, at every level of knowledge, properties and
conjectures emerge from experimentations and research (Grenier 2008b): 

A necessary condition to tile a square, that is not sufficient – this result can be proved by
a very easy counter-example ; Then, a necessary and sufficient condition to tiling
emerges, according to the position of the hole. The proof consists in two steps : first, a
proof of impossibility – by a « forced solution » tiling (reductio ad absurdum) – and a
proof of possibility – by exhibiting an example of  tiling (existence property).

Inductive and deductive reasonings and proofs in mathematics
Leading students to these admittedly different types of reasoning - inductive and
deductive reasoning – is a declared goal of French college and high school programs.
Generally, inductive reasoning aims to generalize to other objects a property known
for certain objects, or to build new objects. Mathematical induction differs from
induction in other sciences, especially in physics, by its intrinsic validity. Here is a
well known excerpt from H. Poincaré :

The induction applied to the physical sciences, is still uncertain, because it is based on the
belief in a general order of the universe, an order which is always outside ourselves.
Mathematical induction, namely, proof by induction, is required instead of necessity,
because it is the assertion of a property of the mind itself. (H. Poincaré, Science and
Hypothesis. Flammarion).

The activity of experimenting and studying special cases plays an important role, and
is almost necessary in learning inductive reasoning, because it helps to establish and
justify the formulation of conjectures – rather than raising them randomly, and helps
to study these conjectures by going back and forth between the experimental data and
the setting up of their evidence.
Reasoning by induction has the particular characteristic of being at the junction point
of the inductive and deductive procedures. In my study of students and teachers
conceptions on induction (Grenier 2002 and 2003), it appears that the understanding
of the concept is severely lacking in depth. Induction is reduced to one or two
techniques, and is perceived as a non-constructive tool of proof, which sometimes
raises doubt for its justification. Accordingly, the scope of problems that can be
solved by this tool remains extremely limited. Problems of various types designed to
lead to a better appraisal of induction were introduced and studied (Grenier 2012). 

A RESEARCH SITUATION INVOLVING OPTIMIZATION : HUNTING BUGS

The assigned task is to protect a grid field against “bugs”, by forbidding them to land
on the grid. In order to do this, traps – uniminos – are available, each covering a box.



The bugs are small polyminoes (dominoes, triminoes, etc.), and they can “land” by
covering exactly some boxes of the grid. The question is to find a minimal
configuration of traps that protect the field. We consider in the sequel a 5 x 5 grid
field. 

Figure 1

To solve the problem, students are equipped with appropriate material (wood,
cardboard, etc.) that allows them to try and modify easily configurations without
practical constraints. We are going to distinguish:

A « solution » : a set of boxes such that if one puts a trap on each of these boxes, then the
field is protected. Putting a trap on each of the 25 squares is a trivial solution, but clearly
a non optimal one.

An « optimal solution » : a configuration of minimum cardinality.

There may be several optimal solutions, namely sets of the same cardinality
corresponding to different configurations.
The question is : for each of the three types of bugs represented above, what is
the smallest number of traps that protects the area ?
Hunting Domino bugs
In that case, an optimal solution satisfies the following necessary condition : there are
no two adjacent boxes without a trap. This condition is also sufficient : if there are
not two adjacent boxes without a trap, then no bug can land on the field, because no
domino can be put on the grid. Two « spontaneous » solutions satisfy this condition :
one with 13 traps (figure 1a) and the other with 12 traps (figure 1b) – this property
proves that the 13 traps solution is not optimal, but does not prove (yet) that the 12
traps configuration is optimal. 

       figure 2a                           figure 2b
The following question is : Is it possible to protect the field with only 11 traps ? The
answer is no. To prove this, we can study the « dual » problem, that is : what is the
largest number of dominoes that can be placed on the grid area without overlap.
Indeed, for a given pavement, it takes at least a trap by a domino-bug. We find easily
that you can put down 12 dominoes without overlap, so at least 12 traps are necessary

trap
bugs

field



to protect the field. If the optimal number is denoted by Nopt it has been therefore
established  that : 

12 traps are sufficient, that is, Nopt ≤ 12 

and 12 traps are necessary, that is, Nopt ≥ 12.

So, we have proved that Nopt=12. 
Numerous experiments of this problem, with students at different levels, show that a
false property-in-act appears frequently, when the 13 traps solution is discovered
first : « Any solution that is no longer a solution when an arbitrary trap is removed, is
optimal ». figure 2b is of course a nice counter-example.
Hunting Long trimino bugs
Some of the reasonings and results that were established with dominoes can be
reinvested here. 

A solution satisfies the following necessary condition : there are no three adjacent boxes
without a trap. 

This condition is also sufficient : if there are no three adjacent boxes without a trap, then
no bug can land on the field, because no long trimino can be put on the grid. 

This second problem is more difficult than the first one : at every level, the
experiments lead students to solutions that are far from the optimal one, such as the
configuration given for the dominoes (figure 1b) – in a first step, a lot of students
think that this is the optimal solution, because they cannot find any other. After
performing new attempts, students frequently consider the one given by figure 3a
below, with 9 traps. However, this configuration turns out not to be optimal. If no
better solution is found, the teacher has to resume the situation, because otherwise
students feel no clear incentive to continue the research.

figure 3a. a 9-trap solution        figures 3b and 3c. two 8-trap solutions

Finally, there is almost always a group that finds one of the two 8-trap solutions
(figure 3b and 3c). It remains to prove that these two solutions are indeed optimal. If
one reinvests the « dual » proof already encoutered in the domino problem, the
majority of students finds that it is possible to put down 7 long triminos without
overlap (figure 4a), so at least 7 traps are necessary to protect the field. So, we have
proved that 7 ≤ Nopt ≤ 8. Finding a pavement with 8 triminos would allow them to
close the question. However, this pavement seems in practice very difficult to find by
students. The pavement in figure 4b proves that 8 traps are necessary to protect the
field, that is Nopt≥ 8  (hence Nopt= 8).



          

    figure 4a                figure 4b  

Hunting L-trimino bugs                
Reasonings and proofs to conduct in this third problem are more complex, essentially
because of the less tractable shape of the triminos : it is not easy to give a necessary
condition for a solution (that protects the field). It can be a good strategy to begin by
finding a pavement of the grid by a maximal number of L-triminoes (dual problem).
One can easily find that there exists a pavement with 8 L-triminos (figure 5). This
pavement proves that  Nopt ≥ 8. 
A recurrent false reasoning frequently follows this discovery : a claim that Nopt ≤ 8,
justified by the fact that it is impossible to put down more than 8 L-triminoes on the
grid, as the equality 3 x 8 = 24 leads to 8 being the obvious maximum. 
After a substantial time for experimentation and research, in general, many students

find 12-traps solution (figure 6a), then 10-traps solution (figure 6b).

      

         

figure 5                           figure 6a           figure 6b

CONCLUSION
Learning argumentation, logical reasoning and different types of mathematical proofs
requires work on appropriate specific problems, the resolution of which can be
attained not just by applying techniques or formal results from the main course. We
have built and experimented a number of "research situations" that should allow such
acquisitions by students of various levels. We analyze especially a situation of "bug
hunting" that enables students to construct conjectures and later to reformulate them
in terms of implications, necessary and sufficient conditions (along with the methods
of exhaustivity of cases, contraposition, reasoning by contradiction, counterexamples,
etc). Our "SiRC" therefore contain all necessary ingredients to enter into genuine
mathematical activities. 
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ANNEX 1. SIRC EXAMPLES (MATHS À MODELER, IREM, UQAM)

Some examples of Research Situations for classroom, with the main concepts or tools
that they bring into play.
Polyminos tilings /algorithms, existence theorems / graph theory
Hunting the bug / optimization / number theory, lower and upper bounds
Discrete geometrical objects / representation, definition / euclidian an non euclidian
geometries
Moving on the discrete plane / definition / generating or minimal systems, linear
algebra
Geometry at the mountain / space representation / non euclidian geometry,
euclidian axioms
Regular 3D polyhedra / defining, handling and proving / 3D geometry
Regular polygons with integer vertices / induction, ad absurdum / combinatorial
geometry
Disks in triangles or squares / optimization / combinatorial geometry, graph theory



ANNEX 2. TILING POLYMINOES 
Problem P1. Rectangle with a hole in any position
to tile with dominoes

Some elements of the mathematical activity in the resolution of Problem 1
Properties and conjectures that emerge from experimentations and research
Property 1. A necessary condition to tile a square having a
hole with dominoes, is that the area is even.
This condition is not sufficient. counter-example :
Property 2. For n = 3, a necessary and sufficient condition to tile
with dominoes is that the hole is situated on any of the streaked
position below.

proof of  impossibility : by a « forced » tiling (ad absurdum)

proof of  possibility :  by exhibiting a tiling (existence property)
These proofs are not transferable to any n.
Proof for every n, when tiling is possible : by structuration in rectangles with even
area (without any hole),  or by induction. This result is also true for rectangles

Proofs of impossibility for n arbitrary
Property. A necessary condition to tile is that, in a checkered
coloration, the polymino is balanced
Proof by coloration, proof ad absurdum or by contradiction
(if non balanced, then non tiling)
This condition is necessary for any type of polymino, but
generally not sufficient.

?

?


